
Computers and Mathematics with Applications 68 (2014) 1819–1843

Contents lists available at ScienceDirect

Computers and Mathematics with Applications

journal homepage: www.elsevier.com/locate/camwa

An efficient lattice Boltzmann multiphase model for 3D flows
with large density ratios at high Reynolds numbers

Amir Banari a,∗, Christian F. Janßen a,b, Stephan T. Grilli a
a Department of Ocean Engineering, University of Rhode Island, USA
b Institute for Fluid Dynamics and Ship Theory, Hamburg University of Technology, Germany

a r t i c l e i n f o

Article history:
Received 29 March 2014
Received in revised form 29 September
2014
Accepted 10 October 2014
Available online 1 November 2014

Keywords:
Lattice Boltzmann method
Multiphase flows
High density ratio
Rising bubble
Drop impact
Breaking wave

a b s t r a c t

We report on the development, implementation and validation of a new Lattice Boltzmann
method (LBM) for the numerical simulation of three-dimensional multiphase flows (here
with only two components) with both high density ratio and high Reynolds number.
This method is based in part on, but aims at achieving a higher computational efficiency
than Inamuro et al.’s model (Inamuro et al., 2004). Here, we use a LBM to solve both a
pressureless Navier–Stokes equation, in which the implementation of viscous terms is
improved, and a pressure Poisson equation (using different distribution functions and
a D3Q19 lattice scheme); additionally, we propose a new diffusive interface capturing
method, based on the Cahn–Hilliard equation, which is also solved with a LBM. To achieve
maximum efficiency, the entire model is implemented and solved on a heavily parallel
GPGPU co-processor. The proposed algorithm is applied to several test cases, such as
a splashing droplet, a rising bubble, and a braking ocean wave. In all cases, numerical
results are found to agree very well with reference data, and/or to converge with the
discretization.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years, the lattice Boltzmannmethod (LBM) has become an increasingly attractive, fast, and accurate, alternative
modeling method to standard continuum mechanics numerical models, for solving a variety of complex single and
multiple-fluid flow problems [1]. Besides its versatility, this is in part due to the LBM’s ability to be efficiently parallelized
for implementation on General Purpose Graphical Processor Units (GPGPUs). Specifically, it has been shown in various
publications [2–4] that LBMmethods are especially well-suited for a GPGPU implementation, due to the locality of collision
and propagation operators and the explicit nature of the method.

The LBM is based on the Boltzmann equation, which governs the dynamics of molecular probability distribution func-
tions from a microscopic point of view. In the standard LBM implementation, the Boltzmann equation is discretized on an
Eulerian mesh, a.k.a. the lattice, yielding a numerical method for computing macroscopic distribution functions on the lat-
tice, in which the macroscopic hydrodynamic quantities, such as pressure and velocity, are obtained as low-order moments
of these distribution functions [5,1]. To the limit of small time step and grid spacing, the LBM solution can be shown to
converge towards the solution of the governingmacroscopic equations of continuummechanics [6]. Hence, with the proper
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selection of the LBM collision operator and distribution functions, the LBM solution can be made to converge to that of the
Navier–Stokes equations (NS), including in the presence of a free surface (e.g., Janssen et al. [7]). The explicit nature of the
method and the linear formulation of advection terms in the LBM collision–propagation equation provide the numerical
scheme with several advantages, such as: (i) a relatively easy implementation (as far as uniform grids are concerned); and
(ii) the locality of numerical operators, which allows for a more efficient parallel implementation, particularly on GPGPUs,
than for more traditional finite volume of finite element algorithms. These characteristics havemade the LBM awidely used
tool for solving various complex fluid mechanics problems, such as multiphase flows, micro- and nanoscale flows, flows in
porous media, and other fluid flow types [8,9,1].

Although many studies of multiphase flows using the LBM have been reported [10,11], most of these had two significant
limitations: (i) the maximum density ratio between fluids is typically limited to 5–10, due to the triggering of local
instabilities near the fluid-phase interface for larger ratios; (ii) most of the schemes cannot simulate high Reynolds
number flows, due to instabilities resulting from the low relaxation times required for high Reynolds numbers (Re). The
effects of either one of these problems are sufficient to make simulations unstable, even in the absence of the other
problem.

The practical applications that motivated this research deal with air–sea interactions at the ocean surface in high wind
conditions, hence with turbulent (i.e., very large Re values around 108) two-fluid flows with a high density ratio (order
1000). Hence, our main goal has been to develop an efficient LBM model that overcame these two limitations.

Several LBM studies ofmultiphase flowswith a high density ratio have been proposed; Zheng et al. [12] proposed an LBM
scheme for high density ratio, but in their work they used an artificial density ratio defined as the mean of densities of two
fluid system. The deficiencies and limitations of their work have been explained in [13,14]. Two promising concepts were
proposed by Lee et al. [8] and Inamuro et al. [9]. Lee et al. [8] used an approach similar to that of He et al. [15], in which they
transformed the classical single phase discrete Boltzmann equation, from a mass–momentum to a pressure–momentum
formulation. This decreased potential instabilities that could occur due to large fluid density gradients near the phase
interface. Also, they split up the intermolecular forces for a non-ideal gas into hydrodynamic pressure, thermodynamic
pressure, and surface tension force contributions. They reported that ‘‘parasitic currents’’ at the phase interface affected
the numerical results due to the imbalance between thermodynamic pressure and surface tension forces, resulting from
truncation errors related to curvature computations. Theynearly eliminated this problembyusing a thermodynamic identity
to recast the intermolecular forcing term from a stress to a potential formulation. Furthermore, to stabilize their numerical
scheme for large density ratios, they used different discretization patterns (i.e., central, biased and mixed differences) at
different stages of the simulations. With this scheme, they were able to simulate two-phase flows with density ratio up to
1000. However, they could not achieve high Reynolds numbers, because stability issues related to low relaxation timeswere
not addressed, and in their scheme relaxation time was still a function of the Reynolds number. To eliminate the numerical
instabilities resulting from high density ratios, Inamuro et al. [9] removed the density from the advection part of the LBM
equilibrium distribution functions. This in effect eliminated the pressure gradient from the corresponding macroscopic
momentum equation, which thus became a ‘‘pressureless’’ NS equations. To retrieve the complete momentum equations
and satisfy mass conservation, they subsequently corrected the velocity field by solving a Poisson equation for the pressure
field. In theirmethod, unlike in classical LBMs, the fluid viscosity is no longer related to the relaxation time and hence results
stay more stable at high Reynolds numbers. Finally, in Inamuro et al.’s method, viscous effects are modeled by specifying
the viscous stress tensor as a body force in the LBM collision operator. Proceeding this way, however, yields additional
non-physical terms in the corresponding momentum equation, which decreases the model accuracy. In earlier work [5], we
modified Inamuro et al.’s method to solve two-dimensional (2D) two-phase flows with high density ratio, by removing the
non-physical terms from themomentumequation and formulating the phase interface tracking equations in amore rigorous
way, based on the Cahn–Hilliard equations [16]. Additionally, we efficiently implemented ourmodel for amassively parallel
solution on a GPGPU. In doing so, we solved all the governing equations for each fluid, the interface, and the Poisson equation
(required for correcting the velocity field) with a LBM scheme, thus achieving an even higher computational efficiency on
the GPGPU. Our method, however, only worked for low Reynolds number flows.

In this paper, in light of this earlier work, we develop a new three-dimensional (3D) LBM model, also based on Inamuro
et al.’s [9] approach. As before, we introduce new equilibrium distribution functions to both retrieve NS equations and
improve the formulation of surface tension and viscous forces. For the interface capturing part, as in [5], we solve the
Cahn–Hilliard equation using a LBM scheme with improved equilibrium distribution functions. In this new 3D model,
however, we formulate the latter functions to be able to achieve high Reynolds numbers in the applications without
suffering from instability problems. The resulting numerical scheme is computationally demanding, as the Poisson equation
must be (iteratively) solved for each time step of the solution, in order to obtain the velocity field correction terms. As
before, to achieve high computational efficiency, our LBM code is parallelized and implemented on a GPGPU using the
nVIDIA CUDA framework. This approach provides access to the latest generation of GPGPU boards, such as the nVIDIA
Tesla C2070 that was used in the present work (448 computing cores; 6 GB of memory; and a double precision computing
capability).

Thepaper is organized as follows.We first develop the LBMequations used to solve formultiphase flowswithhighdensity
ratios and detail their numerical implementation. The method is then validated for a series of applications, by comparing
the present numerical results to reference solutions, for the splashing of droplets on a thin fluid layer, for a rising bubble,
and for breaking ocean waves. Finally, we draws some conclusions and provide perspectives for future work.
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