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a b s t r a c t

We present a spectral mimetic least-squares method for a model diffusion–reaction
problem, which preserves key conservation properties of the continuum problem. Casting
the model problem into a first-order system for two scalar and two vector variables
shifts material properties from the differential equations to a pair of constitutive relations.
We use this system to motivate a new least-squares functional involving all four fields
and show that its minimizer satisfies the differential equations exactly. Discretization of
the four-field least-squares functional by spectral spaces compatible with the differential
operators leads to a least-squares method in which the differential equations are also
satisfied exactly. Moreover, the latter are reduced to purely topological relationships for
the degrees of freedom that can be satisfiedwithout reference to basis functions. Numerical
experiments confirm the spectral accuracy of the method and its local conservation.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

We consider the model diffusion–reaction problem

−∇ · A∇φ + γφ = f inΩ,
φ = g on ΓD,

n · A∇φ = h on ΓN ,

(1)

where Ω ⊂ Rn, n = 2, 3, has a Lipschitz-continuous boundary ∂Ω = ΓD ∪ ΓN and n is the outward unit normal to ∂Ω .
We assume that A is a symmetric positive definite tensor and γ is a real-valued, strictly positive function, i.e., there exist
constants fmin, fmax, γmin, γmax > 0 such that

fminξ
T ξ ≤ ξTA(x)ξ ≤ fmaxξ

T ξ and γmin ≤ γ (x) ≤ γmax, (2)

for all x ∈ Ω and ξ ∈ TxΩ . The tensor A and the function γ describe material properties. For instance, in heat transfer
applications A is the thermal conductivity of the material and γ can be related to the specific heat capacity.
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Almost all published2 least-squares methods for (1) start with the reformulation of the governing equations into an
equivalent first-order system

∇ · u + γφ = f in Ω,
u + A∇φ = 0 in Ω,
φ = g on ΓD,

n · u = −h on ΓN

(3)

followed by setting up a least-squares functional

J (u, φ; f ) :=
1
2


∥∇ · u + γφ − f ∥2

X + ∥u + A∇φ∥
2
Y


, (4)

and a least-squares principle, which is the following unconstrained minimization problem:
(u, φ) = argmin

v∈U, ϕ∈V
J (v, ϕ; f ). (5)

We will refer to φ and u as the potential and flux variables. In (4)–(5) X, Y and U, V are some appropriate data and solution
spaces. The key juncture in the definition of a well-posed least-squares method is to choose these spaces such that J is
norm-equivalent, i.e., the residual ‘‘energy’’ |||(u, φ)||| := J (u, φ; 0) defines an equivalent norm on the solution spaces:

C1

∥v∥2

U + ∥ϕ∥
2
V


≤ |||(v, ϕ)|||2 ≤ C2


∥v∥2

U + ∥ϕ∥
2
V


, ∀v ∈ U, ϕ ∈ V . (6)

This guarantees the strong coercivity of the Euler–Lagrange equation for (5), which is the least-squares variational problem.
As a result, restriction of the least-squares principle (5) to finite dimensional subspaces Uh

⊂ U and V h
⊂ V yields a

well-posed discrete least-squares problem with symmetric and positive definite linear system. This obviates the need for
an inf–sup compatibility condition between the variables and makes the method amenable to well-established iterative
solvers. The latter is one of the key advantages of least-squares methods. Furthermore, norm-equivalence (6) implies
that minimization of J amounts to minimization of the error in u and φ in their respective norms. Therefore, the least-
squares functional provides a natural a posteriori error estimator [2], which is another important advantage of least-squares
methods.

One common choice for which (6) holds is X = Y = L2(Ω),U = H(div,Ω) and V = H1(Ω). Because strong coercivity
is inherited on subspaces, one can approximate both solution spaces by standard C0 elements. Since the inception of least-
squaresmethods this has often been quoted as one of their principal advantages. However, when formulated in this way, the
least-squares method is not conservative [3–5] and in some cases solutions can be very inaccurate; see [6,7] for examples.

The use of div-conforming elements for the flux, such as Raviart–Thomas elements [8], has been suggested in [9] as a
way to improve the accuracy and conservation of least-squares methods for (1). Analysis in [9] shows that div-conforming
elements enable optimal L2 convergence of the flux, which does not hold true for nodal elements. Furthermore, the flux
approximation becomes locally conservative.

In this paperwe extend these ideas to develop a spectralmimetic least-squaresmethod for (1) that is locally conservative.
Reformulation of themodel problem into a four-field first-order system involving two scalar and two vector variables allows
us to shift material parameters from the differential operators into a pair of constitutive relations. The four-field system
prompts the inclusion of two new equation residuals to the standard least-squares formulation (4). We show that the
resulting least-squares principle satisfies exactly the differential equations, while the constitutive relations are satisfied
approximately. The key idea then is to approximate the four fields by finite elements from a discrete exact sequence. This
allows us to satisfy exactly the differential equations in the discrete setting and yields a locally conservative least-squares
method.

In contrast to other high-order methods, which utilize modal or purely nodal degrees of freedom, our approach uses
compatible spectral elements with geometrically localized degrees of freedom; see, e.g., [10] for a related construction of
high-order Whitney elements on simplices. Because these degrees of freedom live on geometric mesh entities, they are
co-chains of the same order as the dimension of the entity. This reduces the action of differential operators such as div, grad
and curl to the action of the co-boundary operator on the corresponding co-chain, i.e., the discretized differential operators
are purely topological and independent of the size or shape of themesh. As a result, our approach transforms the differential
equations into purely topological relationships for the degrees of freedom that can be satisfied without reference to basis
functions. In so doing we obtain a least-squares method in which the discrete differential equations are satisfied exactly,
and the approximation takes place in the constitutive relations involving A and γ .

The rest of the paper is organized as follows. Section 2 transforms (1) into a first-order four field system and explains the
formulation of the mimetic least-squares method. Section 3 derives topological discretizations of the differential equations,
which are independent of the basis functions. Section 4 presents the corresponding compatible spectral elements used in
this work. We discuss approximation of constitutive laws, which depends on the basis functions, in Section 5. In Section 6
the behavior under mappings will be presented. We conclude with numerical examples in Section 7 and conclusions in
Section 8.

2 The negative norm least-squares method for second order elliptic equations [1] is one notable exception.
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