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a b s t r a c t

A Petrov–Galerkin discretisation is studied of an ultra-weak variational formulation of the
convection–diffusion equation in a mixed form. To arrive at an implementable method,
the truly optimal test space has to be replaced by its projection onto a finite dimensional
test search space. To prevent that this latter space has to be taken increasingly large for
vanishing diffusion, a formulation is constructed that is well-posed in the limit case of a
pure transport problem. Numerical experiments show approximations that are very close
to the best approximations to the solution from the trial space, uniformly in the size of the
diffusion term.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

It is well-known that standard Galerkin discretisations of convection–diffusion equations fail to deliver good approxi-
mations for a vanishing diffusion term. In this paper, we study Petrov–Galerkin discretisations.

Unless the layers are resolved by the mesh, the H1-errors of finite element approximations will be dominated by the
errors in the layers. This holds also true for L2-errors when conforming finite elements are applied due to the strong
enforcement of Dirichlet boundary conditions. Therefore, we prefer to measure the errors in the L2-norm and to allow for
discontinuous approximations. To this end, we consider an ultra-weak variational formulation of the convection–diffusion
equation in a mixed form. It is shown to define a boundedly invertible mapping U → V ′, with U and V being Hilbert spaces,
where U is (essentially) a multiple copy of the L2-space.

Building on the earlier works [1–3], we equip V with the operator-dependent optimal test norm. Then given a finite di-
mensional trial spaceUh

⊂ U , the Petrov–Galerkin discretisationwith the optimal test space delivers the best approximation
from Uh to the solution w.r.t. the norm on U .

To arrive at an implementable method, this truly optimal test space has to be replaced by its projection onto a finite
dimensional test search space. With common variational formulations, the truly optimal test functions exhibit layers, and
for vanishing diffusion, the test search space has to be chosen increasingly large to get satisfactory results.

In this paper, a non-standard variational formulation is constructed, such that for a zero diffusion term, the discrete
system is a well-posed Petrov–Galerkin discretisation of the limiting transport problem. This can be seen as a necessary
condition for the equations, which define the optimal test functions, not to be singularly perturbed.

Numerical experiments show that with a fixed test search space, the obtained approximations are very close to the best
approximations to the solution from the trial space, uniformly in the size of the diffusion term.
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This paper is organised as follows. In Section 2, we revisit the theory of Petrov–Galerkin discretisations with optimal test
spaces. In Section 3, we apply it to convection–diffusion equations, and in Section 4 we present numerical results.

In this work, by C . Dwewill mean that C can be bounded by a multiple of D, independently of parameters which C and
Dmay depend on. Obviously, C & D is defined as D . C , and C h D as C . D and C & D.

2. Some general theory

2.1. Petrov–Galerkin discretisations with optimal test spaces

For Hilbert spaces U and V over the scalar field R, a bilinear form b : U × V → R, let (Bu)(v) := b(u, v) define a
boundedly invertible mapping, i.e.,

B ∈ L(U, V ′), B−1
∈ L(V ′,U). (2.1)

Given f ∈ V ′, we are interested in solving

Bu = f .

For defining our method, we will make use of T ∈ L(U, V ) defined by

⟨Tu, v⟩V = b(u, v) (u ∈ U, v ∈ V ). (2.2)

With the Riesz map RV ∈ L(V , V ′) defined by (RVv)(z) = ⟨v, w⟩V (v, z ∈ V ), it holds that T = R−1
V B. Following [2], given a

closed linear trial space Uh
⊂ U , we set the optimal test space

ran T |Uh ,

and consider the Petrov–Galerkin problem of finding uh
∈ Uh such that

b(uh, vh) = f (vh) (vh
∈ ran T |Uh). (2.3)

As will follow as a special case from Proposition 2.2, (2.3) has a unique solution, and it holds that

uh
= argmin

ūh∈Uh
∥f − Būh

∥V ′ ,

so that actually the Petrov–Galerkin discretisation with optimal test space is a least-squares method.
Only in cases where the dual norm ∥ · ∥V ′ can be evaluated exactly, this least-squares problem can be solved exactly. For

this reason, in the following subsection we consider Petrov–Galerkin discretisations with projected optimal test spaces.

2.2. Petrov–Galerkin with projected optimal test spaces

Given a closed linear trial space Uh
⊂ U , let V h

⊂ V be a sufficiently large closed subspace, that we call test search space,
such that

γ h
:= inf

0≠wh∈Uh
sup

0≠vh∈Vh

b(wh, vh)

∥wh∥U∥vh∥V
> 0. (2.4)

Thanks to (2.1), in any case the latter is satisfied for V h
= V , with γ h

≥ ∥B−1
∥

−1
V ′→U (with equality when Uh

= U).

Remark 2.1 (Fortin Projector). From [4],we recall that if there exists a projectorΠh
∈ L(V , V h)with b(wh, Πhv) = b(wh, v)

(wh
∈ Uh), then

γ h
≥ inf

0≠wh∈Uh
sup

0≠v∈V

b(wh, Πhv)

∥wh∥U∥Πhv∥V
≥

1
∥Πh∥V→V∥B−1∥V ′→U

.

Conversely, if (2.4) is valid, then defining Πhv as the first component of the solution (vh, λh) ∈ V h
× Uh of

⟨vh, zh⟩V + b(λh, zh) = ⟨v, zh⟩V (zh ∈ V h),

b(wh, vh) = b(wh, v) (wh
∈ Uh),

a projector as above is constructed, with ∥Πh
∥V→V . (γ h)−1.

We define T h
∈ L(U, V h) by

⟨T hu, vh
⟩V = b(u, vh) (u ∈ U, v ∈ V h), (2.5)

whose existence is guaranteed by Riesz’ representation theorem.
Given a closed linear trial space Uh

⊂ U , we set the projected optimal test space by

ran T h
|Uh ,
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