
Computers and Mathematics with Applications 68 (2014) 1052–1070

Contents lists available at ScienceDirect

Computers and Mathematics with Applications

journal homepage: www.elsevier.com/locate/camwa

A coupled anisotropic chemotaxis-fluid model: The case of
two-sidedly degenerate diffusion
Georges Chamoun a,b,∗, Mazen Saad a, Raafat Talhouk b

a Ecole Centrale de Nantes, Laboratoire de Mathématiques Jean Leray, UMR CNRS 6629, 1 rue de la Noé, 44321 Nantes, France
b Université Libanaise, EDST et Faculté des sciences I, Laboratoire de Mathématiques, Hadath, Beyrouth, Liban

a r t i c l e i n f o

Article history:
Available online 28 April 2014

Keywords:
Degenerate parabolic equation
Navier–Stokes equations
Heterogeneous and anisotropic diffusion
Global existence of solutions

a b s t r a c t

In this article, the mathematical analysis of a model arising from biology consisting of
diffusion, chemotaxis with volume filling effect and transport through an incompressible
fluid, is studied. Motivated by numerical andmodeling issues, the global-in-time existence
of weak solutions to this model is investigated. The novelty with respect to other
related papers lies in the presence of two-sidedly nonlinear degenerate diffusion and of
anisotropic and heterogeneous diffusion tensors where we prove the global existence for
a Chemotaxis-Navier–Stokes system in space dimensions less than or equal to four and we
show the uniqueness of weak solutions for the Chemotaxis-Stokes system in two or three
space dimensions under further assumptions.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Chemotaxis is the movement of biological individuals towards (or away from) a chemoattractant (or chemorepellent).
A vital characteristic of living organisms is the ability to sense signals in the environment and adapt their movement
accordingly. This behavior enables them to locate nutrients, avoid predators or find animals of the same species. A typical
model describing chemotaxis is the Keller–Segel equations derived by Keller and Segel [1] which have become one of the
best-studiedmodels inmathematical biology. In nature, cells often live in a viscous fluid so that cells and chemical substrates
are also transported with the fluid, and meanwhile the motion of the fluid is under the influence of gravitational forcing
generated by aggregation of cells. Thus, it is interesting and important in biology to study some phenomenon of chemotaxis
on the basis of the coupled cell–fluidmodel. In the following, we investigate a system consisting of the parabolic chemotaxis
equations with general tensors coupled to Navier–Stokes equations,

∂tN − ∇ ·

S(x)a(N)∇N


+ ∇ ·


S(x)χ(N)∇C


+ u · ∇N = f (N),

∂tC − ∇ · (M(x)∇C)+ u · ∇C = −k(C)N,
∂tu − ν∆u + (u · ∇)u + ∇P = −N∇φ,
∇ · u = 0, t > 0, x ∈ Ω,

(1.1)

where Ω is an open bounded domain in Rd, d ≤ 4 with smooth boundary ∂Ω . The experimental set-up corresponds to
mixed type boundary conditions. For simplicity here we use null flux conditions for N and C and zero Dirichlet for u to
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reflect the no-slip boundary conditions of the flow. Therefore, this system of equations is supplemented by the following
boundary conditions onΣt = ∂Ω × (0, T ),

S(x)a(N)∇N · η = 0, M(x)∇C · η = 0, u = 0, (1.2)

where η is the exterior unit normal to ∂Ω . The initial conditions onΩ are given by,

N(x, 0) = N0(x), C(x, 0) = C0(x), u(x, 0) = u0(x). (1.3)

Here N , C , u and P denote respectively the cell density, the concentration of a chemical, the velocity field and the pressure
inside the incompressible fluid. Moreover, a(N) denotes the density-dependent diffusion coefficient and χ(N) is usually
written in the form χ(N) = Nh(N) where h is commonly referred to as the chemotactic sensitivity function. The source
term f reflects the interaction between cells such as hydrodynamics interactions. Anisotropic and heterogeneous tensors
are denoted by S(x) and M(x). The fluid is described by an incompressible Navier–Stokes equation with the viscosity ν.
It couples to N and C through transport by the fluid modeled by u · ∇N , u · ∇C and gravitational forcing modeled by
g = −N∇φ as an external force exerted on the fluid by the cells. In fact, this external force can be produced by different
physical mechanisms such as gravity, electric and magnetic forces but in our study, we are only interested in the case of
gravitational force∇φ = ‘‘Vb(ρb−ρ)g ′′z exerted by a bacterium onto the fluid along the upwards unit vector z proportional
to the volume of the bacterium Vb, the gravitation acceleration g = 9.8 m/s2, and the density of bacteria is ρb (bacteria are
about 10% denser thanwater). Moreover, since the fluid is slow, we can use the Stokes equation instead of the Navier–Stokes
equation. So the system looks like,

∂tN − ∇ ·

S(x)a(N)∇N


+ ∇ ·


S(x)χ(N)∇C


+ u · ∇N = f (N),

∂tC − ∇ · (M(x)∇C)+ u · ∇C = −k(C)N,
∂tu − ν∆u + ∇P = −N∇φ,
∇ · u = 0 t > 0, x ∈ Ω.

(1.4)

In the models (1.1) and (1.4), the cell density N diffuses, it moves in the direction of the chemical gradient and it is
transported by the fluid. In addition to that, the chemical C also diffuses, it is also transported by the fluid and it is consumed
proportional to the density of cells N , where this fact is expressed by a function k(C) which is a consumption rate of the
chemical by the cells. In this paper, the chemical substrate can be only consumed by the cells (g̃(N, C) = −k(C)N). For
example, the bacteria ‘‘Bacillus subtilis’’ swim towards higher concentration of oxygen to survive. In other cases, such as the
‘‘Dictyostelium discoideum’’, the chemical can be produced and consumed (g̃(N, C) = aN − bC where a and b are positive
constants) to form some kind of transition to a multicellular organism. The theoretical study of this paper is valid for both
cases (chemotactical transport and transport towards a nutrient) even we are only considering the first one in the sequel.
There are also an another possible choice of g̃ as a cut-off function for which many related experiments have been given
in [2–4] to describe the aggregation of a part of bacteria below an interface between two fluids, while other bacteria are
rendered inactive wherever the oxygen concentration has fallen below the threshold of activity.

Motivated by experiments described in [5,6] which explain the dynamics of anisotropic chemotaxis models in a fluid
at rest (u = 0) and interested by numerical issues related to the dynamics of these models coupled to a viscous fluid
through transport and gravitational force, we investigate in this paper the coupled anisotropic chemotaxis-fluid models
(1.1) and (1.4). A detailed theoretical study of global existence and uniqueness of weak solutions of these models has been
established. In fact, the existence theory in suitable functional spaces and the uniqueness can present several difficulties due
to the complicated cell–fluid interaction even if it only consists of chemotaxis and linear isotropic non-degenerate diffusion
coupled to the fluid. Indeed, in the case of isotropic homogeneous tensors (S(x) = M(x) = Id), linear diffusion (a(N) = 1)
and a concentration-dependent sensitivity (χ(N, C) = Nβ(C) where β(C) is the chemotactic sensitivity), several authors
of the chemotaxis literature have recently studied the global existence in time via finite time blow-up of a weak solution for
the models (1.1) and (1.4). The main tool used to prove global existence is an existing entropy inequality. In [7], the authors
proved the global existence for themodel (1.4) forweak potentialφ or small initial data of the concentration C . Moreover, for
Ω = R2 or R3, by changing the consumption rate (−k(C)N) into a production one (N −aC where a > 0) and by considering
the stationary equation of C , the authors in [8] proved the existence of a critical initial mass M in the model (1.4), below
M we have the global existence and above M we have finite time blow-up. For Ω = R2, the global existence in time of a
weak solution for the model (1.1) is proved in [8]. In addition to that, for the case of isotropic tensors, nonlinear diffusion
(a(N) = mNm−1

∇N) which degenerates only at one point (u = 0) and for the same sensitivity (χ(N, C) = Nβ(C)), the
global existence of a weak solution for the model (1.4) is proved in [9] forΩ = R2 and also proved for 4

3 < m ≤ 2 whereΩ
is bounded in R2. Moreover, the case of m =

4
3 in the whole spaceΩ = R3 is treated also in [10]. To our knowledge, these

are the only results on models related to (1.1) and (1.4).
The purpose of this paper is twofold: on the one hand, we establish the global-in-time existence of weak solutions to the

models (1.1) and (1.4) in the open bounded domainΩ (Ω ⊂ Rd, d ≤ 4), in the presence of anisotropic and heterogeneous
tensors, two-sidedly nonlinear degenerate diffusion, modified chemotactic sensitivity χ and Navier–Stokes equations. On
the other hand, we prove the uniqueness of weak solutions to the system (1.4) in Ω (Ω ⊂ Rd, d = 2, 3) under further
assumptions and regularities on the initial data.
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