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a b s t r a c t

We design nonstandard finite difference (NSFD) schemes which are unconditionally dy-
namically consistent with respect to the positivity property of solutions of cross-diffusion
equations in biosciences. This settles a problem that was open for quite some time. The
study is done in the setting of three concrete and highly relevant cross-diffusion sys-
tems regarding tumor growth, convective predator–prey pursuit and evasion model and
reaction–diffusion–chemotaxis model. It is shown that NSFD schemes used for classical
reaction–diffusion equations, such as the Fisher equation, for which the solutions enjoy
the positivity property, are not appropriate for cross-diffusion systems. The reliable NSFD
schemes are therefore obtained by considering a suitable implementation on the cross-
diffusive term of Mickens’ rule of nonlocal approximation of nonlinear terms, apart from
his rule of complex denominator function of discrete derivatives. We provide numerical
experiments that support the theory as well as the power of the NSFD schemes over the
standard ones. In the case of the cancer growth model, we demonstrate computationally
that our NSFD schemes replicate the property of traveling wave solutions of developing
shocks observed in Marchant et al. (2000).

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Diffusion equations have been extensively studied for the modeling of biological processes such as animal dispersal,
spread of diseases and biofilm growth. Often, the models are in the form of reaction–diffusion and advection–reaction–
diffusion equations [1–4]. In contrast, themathematical analysis for cross-diffusion equations is a challenge which is largely
undeveloped. A cross-diffusion system is characterized by the fact that the diffusion matrix is not strictly diagonal and even
not symmetric positive. Thus, in the equation for one species, there is at least one diffusion-type term that involves an-
other species. In Murray’s mathematical biology book [2,3], which is a good attempt to cover themany topics in biosciences,
some cross-diffusion equations of interest in applications have been identified. Furthermore, cross-diffusion equations are
at the core of modeling of several natural processes such as cancer growth [5,6], population dynamics via, for instance,
Volterra–Lotka cross-diffusion systems [7–9] and chemotaxis [10].

From a theoretical point of view, cross-diffusion equations are challenging mainly because they are strongly coupled
nonlinear parabolic systems, which do not enjoy the maximum principle and thus deriving a priori estimates and proving
the existence of positive solutions is not easy. Nevertheless, some results on global and local existence of solutions as well
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as on their long-time behavior have been established in [7,8]. Equally, the design, for cross-diffusion equations, of reliable
numerical methods that produce positive solutions has been an open problem for many years now [11]. The current paper
deals precisely with this outstanding problem in the following three settings: a model for cancer growth [12], a convective
predator–prey pursuit and evasion model [3] and the basic reaction–diffusion–chemotaxis model [3].

We use the nonstandard finite difference (NSFD) approach. In the first step, we use a boundedness and positivity-
preserving NSFD scheme that we introduced in [13] for classical diffusion equations, including the Fisher equation. This
schemewas constructed by couplingMickens’ rules (of complex denominator functions of discrete derivatives and nonlocal
approximation of nonlinear terms) with a suitable functional relation between the time and the space step sizes. Unfortu-
nately, when applied to cross-diffusion equations, the resulting NSFD schemes are not dynamically reliable. In the second
step, we consider an alternative strategy, which apart from Mickens’ rule on the denominator, consists in using a special
nonlocal approximation of the cross-diffusion terms with the step sizes varying independently from one another. We then
obtain NSFD schemes which are unconditionally dynamically consistent with respect to the positivity property of the solu-
tions of cross-diffusion equations.

Our results, which were announced in [14], are mostly elaborated for the cancer growth model because the initial
motivation of this paper was to provide positive NSFD solutions for this model. The rest of the paper is organized as follows.
In the next section, we present a cancer growth model and design several NSFD schemes for it. Sections 3 and 4 deal with
the convective predator–prey pursuit and evasion model and the basic reaction–diffusion–chemotaxis model, respectively.
Numerical experiments that support the reliability of our NSFD schemes are provided in each section. The last section is
devoted to concluding remarks.

2. A model of malignant invasion

In [2], it is stated that cross-diffusion does not arise in genuinely practical models. In this section, we add to the few
practical examplesmentioned in this reference, a cross-diffusionmodel that governs solid tumor growth.We consider a one-
dimensionalmodel ofmalignant invasion proposed in [12],where u = u(x, t), c = c(x, t) and p = p(x, t) are concentrations
of invasive cells, connective tissue and protease, respectively. The model is presented in nondimensionalized form, with u
scaled so that the carrying capacity is unit. In the unlikely case when connective tissues are absent, the invasive cells grow
in a logistic manner:

du
dt

= u(1 − u). (1)

In particular, invasive cells have an invasive flux of u ∂c
∂x into connective tissues, which leads to the reaction–advection

equation

∂u
∂t

= u(1 − u)−
∂

∂x


u
∂c
∂x


. (2)

Connective tissues are dissolved by proteases in accordance with the mass action principle:

∂c
∂t

= −pc. (3)

The latter are produced by invasive cells upon contact with connective tissues, according to the law

∂p
∂t

= ϵ−1(uc − p), (4)

where the parameter ϵ > 0 supposed to be small reflects the fact that the units of protease are far smaller than those of
connective tissues and invading cells, and their dynamics are seen on a shorter time scale.

The dimensionless system (2)–(4) forms the so-called cross-diffusion equations because Eq. (2) of invasive cells has a
diffusion-type term that involves another species, namely c , instead of the usual diffusion term ∂2u

∂x2
. Moreover, unlike clas-

sical diffusion equations, the presence of the negative sign in front of the cross-diffusive term in Eq. (2) is typical of cross-
diffusion systems in biosciences and this is one of the sources of difficulties. Here, we focus on an initial value problem and
thus complete the system with initial conditions

u(x, t) = u0(x), c(x, t) = c0(x) and p(x, t) = p0(x), (5)
for x ∈ R and t > 0. The problem could be considered with appropriate boundary conditions [15].

By setting the right-hand side to be zero, it follows that the system (2)–(4) has three types of constant steady-state so-
lutions E = (u, c, p): the fully malignant equilibrium Em = (1, 0, 0); the normal healthy equilibrium En = (0, c, 0), where
c > 0 is any constant, and the trivial equilibrium Et = (0, 0, 0). By seeking traveling wave solutions, it can be shown,
similarly to the Fisher–KPP equation [1,3], that the solutions enjoy the property

u(x, t) ≥ 0, c(x, t) ≥ 0, p(x, t) ≥ 0, (6)
with c decreasing in timewhenever the initial conditions are nonnegative: u0(x) ≥ 0, c0(x) ≥ 0 and p0(x) ≥ 0. For existence
of solutions for some cross-diffusion equations, we refer to [7,8].
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