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a b s t r a c t

Primal stabilized hybrid finite element methods for the linear elasticity problem are pro-
posed consisting of locally discontinuous Galerkin problems in the primal variable coupled
to a global problem in the multiplier which is identified with the trace of the displace-
ment field. Numerical analysis, covering both continuous or discontinuous interpolations
of themultiplier, shows that the proposed formulation preserves themain properties of the
associate DGmethod such as consistency, stability, boundedness and optimal rates of con-
vergence in the energy norm, and in the L2(Ω) norm for adjoint consistent formulations.
Convergence studies confirm the optimal rates of convergence predicted by the numerical
analysis presented here and a local post-processing technique is proposed to recover stress
approximations with improved rates of convergence in H(div) norm.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Classical displacement based finite element methods for the elasticity problem determine the displacement field di-
rectly and evaluate the stresses by post-processing. The advantage of displacement-based formulation over amore complex
mixed approach is that the introduction of additional unknowns and related difficulties are avoided. The disadvantages of
displacement formulations are their well-known limitations, for example, the poor accuracy of the recovered stress approx-
imations given by standard post-processing. For various reasons, mixed finite element methods in stress and displacement
fields appear to be a natural choice. The pair forms a unique saddle point of the Hellinger–Reissner functional but, due to
the symmetry constraint on the stress tensor, it is extremely difficult to construct stable finite element spaces which satisfy
Brezzi’s stability conditions [1,2]. In two spatial dimensions, the first stable finite element with polynomial shape func-
tions is presented in Arnold and Winther [3,4] and extended in [5–9]. Stable mixed finite elements with weakly imposed
symmetry [10–14], stabilized formulations [15–17] and nonconforming elements [18–20] have been also developed.

Discontinuous Galerkin (DG) methods are naturally a suitable alternative for numerically solving linear elasticity prob-
lems. Robustness, local conservation and flexibility for implementing h and p-adaptivity strategies are well known advan-
tages of DG methods stemming from the use of finite element spaces consisting of discontinuous piecewise polynomials. A
Local DG (LDG) method for linear elasticity is presented in [21] and interior penalty DG methods are considered in [22–25].
Mixed DG methods are given in [26,27] and a mixed DG method with weakly imposed symmetry of the stress tensors is
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proposed in [28]. However, the practical utility of DGmethods has been limited by their more complex formulation, compu-
tational implementation and much larger number of degrees-of-freedom they require compared with classical continuous
Galerkin methods.

For elliptic problems, the natural connection between DG formulations and hybrid methods has been successfully ex-
ploited to derive new finite element methods with improved stability and reduced complexity and computational cost but
still keeping the robustness and flexibility of DGmethods [29–35]. A formulation that uses local, element-wise problems to
project a continuous finite element space into a given discontinuous space, and then applies a discontinuous Galerkin for-
mulation calledMultiscale Discontinuous Galerkin (MDG)method introduced in [36] and analyzed in [37]. Arruda et al. [38]
proposed the Locally Discontinuous but Globally Continuous (LDGC) finite element formulation combining the advantages
of discontinuous Galerkin methods with the element based data structure and reduced computational cost of classical con-
forming finite element methods. Differently from the classical primal hybrid formulation of Raviart and Thomas [39], where
themultiplier is identified with the flux, the LDGCmultiplier is the trace of the primal variable. Similar works are the hybrid
mortar method proposed and analyzed by Egger in [40] and the interface stabilized method developed by Labeur andWells
in [41] and analyzed by Wells in [42] for advection–diffusion–reaction equations.

Following Arruda et al. [38] and Egger in [40], we propose here a primal Stabilized Hybrid DG (SHDG) method for the
linear elasticity problem in which the multiplier, identified with the trace of the displacement field, can be continuous as
in [38] or discontinuous as in [40]. The method is proved to be stable for any order of interpolations of the displacement
field and the multiplier. The local problems, in the displacement field, can always be solved at the element level in favor of
the Lagrangemultiplier and, consequently, the global system is assembled involving only the degrees of freedom associated
with themultipliers. A numerical analysis, covering continuous or discontinuous interpolations of themultiplier, shows that
the proposed formulation preserves the main properties of the associate DG method such as consistency, stability, bound-
edness and optimal rates of convergence in the energy norm, and in the L2(Ω) norm for adjoint consistent formulations.
Stress approximations with observed optimal rates of convergence in H(div) norm are obtained by a local post-processing
of both displacement and stress using the multiplier approximation and residual forms of the constitutive and equilibrium
equations at the element level.

The remainder of the paper is organized as follows. In Section 2 we present a review of notation and our model problem.
The primal SHDGmethod is introduced in Section 3. A numerical analysis of the SHDG formulation is presented in Section 4
showing that it preserves the main properties of the associated DG method. In Section 5 the local and global problems are
analyzed considering two strategies for solving the coupled systemof linear equations associatedwith the SHDG formulation
and a local post-processing is introduced to recovermore accurate stress approximations. Numerical results on convergence
studies are presented in Section 6. Concluding remarks are drawn in Section 7.

2. Preliminaries

2.1. Notation

To introduce the stabilized hybrid formulation, we first present some definitions and notations. Let Ω ∈ Rd, d ≥ 1, be
a bounded domain with a Lipschitz boundary Γ = ∂Ω , and L2(Ω) the space of square integrable functions, equipped with
the usual norm ∥ · ∥0,Ω . Let Hm(Ω) be the usual Sobolev space of all functions in L2(Ω) whose weak derivatives up to the
nonnegative integer orderm are also L2(Ω)-integrable [43]. The corresponding Hm(Ω) norms and semi-norms are denoted
by ∥ · ∥m,Ω = ∥ · ∥m and | · |m,Ω = | · |m, respectively. We also use the Hilbert space

H(div) = {u ∈ [L2(Ω)]d; divu ∈ L2(Ω)}

with norm

∥u∥
2
H(div) := ∥u∥

2
0 + ∥divu∥

2
0.

For a given function space V (Ω), let V(Ω) = [V (Ω)]d and V(Ω) = [V (Ω)]d×d be the spaces of all vector and tensor
fields whose components belong to V (Ω). These spaces are furnished with the usual product norms (which, for simplicity,
are denoted similarly as the norm in V (Ω)). For vectors v,w ∈ Rd, and matrices σ, τ ∈ Rd×d, we use the standard notation.
Furthermore, let v ⊗ w be the tensor that satisfy the following identity

v · σw = σ : (v ⊗ w).

For simplicity we restrict our finite element formulation to two-dimensional domain Ω . Let

Th = {K} := union of all elements K

be a regular finite element partition of Ω and let

Eh = {e : e is an edge of K for all K ∈ Th}

denote the set of all edges of all elements K of the mesh Th.

E0
h = {e ∈ Eh e is an interior edge}
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