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a b s t r a c t

For the natural convection problem, we propose a new projection-based finite element
variational multiscale method by defining the stabilization terms via two local Gauss
integrations at the element level. Based on the implicit backward Euler and implicit
Crank–Nicolson schemes for temporal discretization and stabilized mixed finite element
spatial discretization,we establish twonumerical schemes for the natural convection prob-
lem. Unconditional stabilities of the two numerical schemes are proved. We derive error
bounds of the fully discrete solution which are first and second order in time, respectively.
The optimal error estimates in space could be achieved for velocity and temperature in
the H1 semi-norm, and for pressure in the L2 norm with the proper choosing of stabilized
parameters. However, the error estimates in space are suboptimal for velocity and tem-
perature in the L2 norm. The derived theoretical results are supported by two numerical
examples.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Natural convection is present in many real situations, such as room ventilation, double glass window design, etc. More
importantly, it is behind the oceanic and atmospheric dynamics. Typically, fluid flow and heat transfer are governed by
the partial differential equation system of mass, momentum and energy conservation, but in the case of natural convection
the so-called Boussinesq approximation is generally employed. In this article, a finite element variational multiscale (VMS)
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method based on two local Gauss integrations is applied to solve numerically the time-dependent buoyancy driven flows,
namely, the natural convection problem. The natural convection problem which we consider is: for bounded, polyhedral
domains Ωe ⊂ Ω in Rd (d = 2, 3) with dist(∂Ωe, ∂Ω) > 0, the simulation time t∗, and the force field γ : Ω × (0, t∗] → R,
find the velocity u : Ω × (0, t∗] → Rd, the pressure p : Ω × (0, t∗] → R and the temperature T : Ω × (0, t∗] → R
satisfying [1,2]

ut − Pr∆u + (u · ∇)u + ∇p = Pr RaζT , ζ = g/|g|, (1)

u = 0 on ∂Ωe, u ≡ 0 in Ω − Ωe = Ωs, (2)

u|t=0 = u0, ∇ · u(x, t) = 0 in Ωe, (3)

Tt − ∇ · (k∇T ) + (u · ∇)T = γ in Ω, (4)

T = 0 on ΓT ,
∂T
∂n

= 0 on ΓB, (5)

T |t=0 = T0, in Ω, (6)

where ζ is a unit vector in the direction of gravitational acceleration, γ is a known forcing function, n is the outward unit
normal to Ω , and ΓT = ∂Ω \ΓB where ΓB is a regular open subset of ∂Ω . Pr , Ra and k > 0 denote Prandtl number, Rayleigh
number and the thermal conductivity parameter, respectively. Moreover, k = ke in Ωe and k = ks in Ωs, where ke and ks are
positive constants. A global-in-time existence result for a more general natural convection problem (Navier–Stokes/Fourier
model) can be found in Theorem 3.1 of [3].

The natural convection problem (or conduction–convection problems) includes not only the incompressibility and strong
nonlinearity, but also the coupling between the energy equation and the equations governing the fluid motion. There are
numerous works devoted to the development of efficient schemes for the natural convection problem ([1,4–21] and the
references therein). We mention only a few papers here. Early papers on the stationary case are [6,7] by using the mixed
finite element method. Cibik and Kaya [8] have formulated a projection-based stabilization finite element technique for
solving the steady-state natural convection problems. The global stabilizations are added for both velocity and temperature
variables and these effects are subtracted from the large scales. Keith J. Galvin et al. [9] have considered the problem of poor
mass conservation in mixed finite element algorithms for flow problems with large rotation-free forcing in the momentum
equation. Zhang et al. [10] have presented a subgrid stabilized defect-correctionmethod for steady-state natural convection
problem. Shi and Ren [11,12] have proposed a new stable nonconforming mixed finite element and a least squares
Galerkin–Petrov nonconforming mixed finite element method for stationary conduction–convection problems. Boland and
Layton [1] have derived stability properties and error estimates for the Galerkin finite element spatial discretization case
when used to approximate heat flow in a fluid enclosed by a solid medium. Luo et al. [18] have given an optimizing reduced
Petrov–Galerkin least squares mixed finite element for the non-stationary conduction–convection problem. Manzari [19]
has used a standardGalerkin finite elementmethod for spatial discretization and an explicitmultistage Runge–Kutta scheme
to march in the time domain for convection heat transfer problems. Benítez and Bermúdez [21] have presented a second
order Lagrange–Galerkin method for natural convection problems.

If problem (1)–(6) with large Rayleigh number is solved by the usual Galerkin finite element method, it may exhibit
global spurious oscillations [4,5] and yield inaccurate approximation. One reason is the dominance of the convection term.
There are many numerical methods devoted to solving such problem, for example, the two-level stabilization scheme
in [22], the defect-correction methods in [23–27,10], and the variational multiscale (VMS) method [28–35]. The original
motivation of VMS methods was to justify the so-called stabilized finite element methods, which define the large scales
in a different way, namely by projection into appropriate subspaces. The two local Gauss integrations method was first
developed to offset the discrete pressure space by the residual of the simple and symmetry term at the element level
in order to circumvent the inf–sup condition (see e.g., [36–38]), while the idea of two local Gauss integrations has been
considered to deal with the VMS methods [39,16]. A significant feature of the two Gauss VMS method [39,16] is that the
stabilization terms are defined by the difference between a consistent and an under-integrated matrix only involving the
velocity gradient (and temperature gradient), rather than the projection operator as the common VMS methods used.
The two local VMS method need not introduce extra variables and can keep the same accurate as the common VMS
method. Shang [40] has presented an error analysis of a fully discrete finite element VMS method based on two local
Gauss integrations for time-dependent Navier–Stokes equations. In this report, we will extend the new VMS method to
a more complicated model: time-dependent natural convection problem. We have derived the stability and the error
estimates of two fully discrete schemes, and given mathematical guidance on the selection of the methods’ algorithmic
parameters.

The paper is organized as follows. In Section 2, we introduce notation and mathematical preliminaries necessary for the
analysis that follows. Two numerical schemes and their stabilities are presented in Section 3. In Section 4, error estimates
of velocity, temperature and pressure are given for backward Euler temporal discretization. In Section 5, error estimates
of velocity, temperature and pressure are given for Crank–Nicolson temporal discretization. Numerical experiments are
presented in Section 6, including a convergence rate verification, and a test on natural convection cavity with left hand side
heating that shows the two methods are effective at capturing large-scale behavior. Conclusions follow.
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