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a b s t r a c t

A fast adaptive diffusion wavelet method is developed for solving the Burger’s equation.
The diffusion wavelet is developed in 2006 (Coifman and Maggioni, 2006) and its most
important feature is that it can be constructed on any kind ofmanifold. Classes of operators
which can be used for construction of the diffusion wavelet include second order finite
difference differentiation matrices. The efficiency of the method is that the same operator
is used for the construction of the diffusion wavelet as well as for the discretization of the
differential operator involved in the Burger’s equation. The diffusionwavelet is used for the
construction of an adaptive grid as well as for the fast computation of the dyadic powers
of the finite difference matrices involved in the numerical solution of Burger’s equation. In
this paper, we have considered one dimensional and two dimensional Burger’s equation
with Dirichlet and periodic boundary conditions. For each test problem the CPU time taken
by fast adaptive diffusion wavelet method is compared with the CPU time taken by finite
differencemethod and observed that the proposedmethod takes lesser CPU time.We have
also verified the convergence of the given method.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Burger’s equation models the situations where both typical non-linearity and diffusion occur [1–4]. The equation is
intensively used to test the numerical schemes. Various numerical methods have been developed for solving Burger’s
equation, for example finite element schemes in [5], finite difference schemes in [6], spectralmethods in [7,8] anddistributed
functional approaches in [9,10].

While solving a partial differential equation (PDE) numerically, using an adaptive grid [11–13] has obvious advantages
over using a static grid.Wavelets arewidely used for numerical solutions of PDEs (and in particular the Burger’s equation) on
adaptive grids. In [14] one dimensional Burger’s equation with periodic boundary conditions is solved on a static grid using
Daubechies wavelet and in [15] it is solved using quasi wavelets [16]. An adaptive grid is generated using spline wavelets
to solve one-dimensional Burger’s equation with periodic boundary conditions in [17]. In [18] second generation wavelet is
used to solve one dimensional Burger’s equation on an adaptive grid. But the wavelet theory for numerical solution of PDEs
on general manifold is a relatively new field, although there are many non wavelet numerical techniques available [19–22].
One of the work done in this direction is a dynamic adaptive numerical method for solving PDEs on the sphere using second
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generation spherical wavelet [23]. Fast adaptive diffusion wavelet method (FADWM) developed in this paper can be seen as
a first step in this direction.

The diffusion wavelet is introduced by Coifman and his collaborators in 2006 [24]. The most important feature of the
diffusion wavelet is that it can be constructed on general manifolds. This wavelet has not been used for numerical solutions
of PDEs and to best of our knowledge ours is the first attempt. In FADWM, diffusion wavelet is used for making an adaptive
grid and for the fast computation of the dyadic powers of the finite difference matrices involved in the numerical solution
of the Burger’s equation.

The paper is organized as follows: Section 2 gives a brief description of the diffusion wavelet. FADWM is developed in
Section 3. Section 4 contains the numerical results. Section 5 concludes the paper and gives a brief idea of the future work.

2. A brief description of diffusion wavelet

Diffusion wavelet [24] is constructed on any general manifold X . Multiresolution analysis (MRA) is built using a diffusion
operator T onL2(X)which is local, self adjoint andwhose high powers have low numerical rank. For example I−T with I as
an identity operator onL2(X) could be the Laplace–Beltrami operator. For any f ∈ L2(X)we have PV j f (x) =


k∈X j c jkφ

j
k(x).

Computing the scaling function coefficients {c jk}k∈X j using the values of {f (xk)}xk∈X j is called diffusion scaling function
transform (DST). Computing the function f from the coefficients {c jk}k∈X j is called the inverse diffusion scaling function
transform (IDST).

For any function f ∈ L2(X), PV j f = PV j−1 f + PW j−1 f . So we can write (PV j f )(x) =


k∈X j−1 c j−1
k φ

j−1
k (x) +


k∈Y j−1

dj−1
k ψ

j−1
k (x), where Y j−1 is the index set. Given the set cj, computing the sets cj−1

= {c j−1
k }k∈X j−1 and dj−1

= {dj−1
k }k∈Y j−1 is

termed as partial diffusion wavelet transform (PDWT). Now for the coarsest level J0 and the finest level J , we can decompose
the space V J as V J

= V J0
J−1

j=J0
W j. Therefore

(PVJ f )(x) =


k∈X J0

c J0k φ
J0
k (x)+

J−1
j=J0


k∈Y j

djkψ
j
k(x). (1)

PDWT can be applied on cj for j = J, J − 1, . . . , J0 + 1 to obtain the full diffusion wavelet transform (FDWT) which will
give all the coefficients in (1). Constructing the set cj from the sets cj−1 and dj−1 is called inverse partial diffusion wavelet
transform (IPDWT). Inverse full diffusion wavelet transform (IFDWT) is obtained by applying IPDWT recursively. For details
one can see [24].

3. Fast adaptive diffusion wavelet method (FADWM)

3.1. Efficient computation of {T 2m ,m > 0}

Suppose that we are given a function f ∈ L2(X) and we want to compute T 2m f ≈ [T 2m
]
Φ J

Φ J f. Using [T 2m
]
Φ J−m

Φ J =

[T 2m−1
]
Φ J−m

Φ J−(m−1) [T 2m−2
]
Φ J−(m−1)

Φ J−(m−2) · · · [T ]
Φ J−1

Φ J [T ]
Φ J

Φ J , we can compute [T 2m
]
Φ J−m

Φ J f which is the vector of coordinates of [T 2m
]
Φ J

Φ J f
in the basis Φ J−m of V J−m, i.e., cJ−m. From cJ−m we can compute cJ using IDST. cJ is nothing but the vector of coefficients of
[T 2m

]
Φ J

Φ J f in the basisΦ J which is [T 2m
]
Φ J

Φ J f itself. Algorithm to compute [T 2m
]
Φ J

Φ J f is:

T 2m f ≈ cJ = ALGORITHM(T , f , m)
1) g = [T ]

Φ J

Φ J f.

2)
For k = 0, 1, . . .m − 1
g = [T 2k

]
Φ J−(k+1)

Φ J−k g
end

 This gives us cJ−m.

3) cJ−m IDST
−−→ cJ .

4) cJ = [T 2m
]
Φ J

Φ J f.

We took f (x) = x and computed [T 212
]
Φ8

Φ8 f (T is the diffusion operator constructed using the construction of [25]) both

analytically (the matrix [T ]
Φ8

Φ8 is multiplied 212 times and finally with f) and using the above algorithm. The errors in l2 and

l∞ norms are 2.393 × 10−9 and 1.563 × 10−10 respectively. The CPU time taken for computing [T 212
]
Φ8

Φ8 f using the above
algorithm is 2% of the CPU time taken for its analytic computation.
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