Varieties of comma-free codes

Christian J. Michel ${ }^{\mathrm{a}, *}$, Giuseppe Pirillo ${ }^{\mathrm{b}, \mathrm{c}}$, Mario A. Pirillo ${ }^{\mathrm{d}}$
${ }^{\text {a }}$ Equipe de Bioinformatique Théorique, LSIIT (UMR CNRS - ULP 7005), Université Louis Pasteur de Strasbourg, Pôle API, Boulevard Sébastien Brant, 67400 Illkirch, France
${ }^{\mathrm{b}}$ Consiglio Nazionale delle Ricerche, Istituto di Analisi dei Sistemi ed Informatica "Antonio Ruberti", Unità di Firenze, Dipartimento di Matematica "U.Dini", viale Morgagni 67/A, 50134 Firenze, Italy
${ }^{\text {c }}$ Université de Marne-la-Vallée, 5 boulevard Descartes, Champs sur Marne, 77454 Marne-la-Vallée Cedex 2, France
${ }^{\text {d }}$ Istituto Statale SS. Annunziata, Piazzale del Poggio Imperiale, Firenze, Italy

Abstract

New varieties of comma-free codes CFC of length 3 on the 4-letter alphabet are defined and analysed: self-complementary comma-free codes (CCFC), C^{3} comma-free codes ($C^{3} \mathrm{CFC}$), C^{3} self-complementary comma-free codes ($C^{3} \mathrm{CCFC}$), selfcomplementary maximal comma-free codes (CMCFC), C^{3} maximal comma-free codes ($C^{3} \mathrm{MCFC}$) and C^{3} self-complementary maximal comma-free codes ($C^{3} \mathrm{CMCFC}$). New properties with words of length $3,4,5$ and 6 in comma-free codes are used for the determination of growth functions in the studied code varieties.

(C) 2007 Elsevier Ltd. All rights reserved.

Keywords: Comma-free code; Word; Letter; Occurrence number; Occurrence probability

1. Introduction

A code in genes has been proposed by Crick et al. [1] in order to explain how the reading of a series of nucleotides could code for the amino acids constituting the proteins. The two problems stressed were: why are there more trinucleotides than amino acids and how to choose the reading frame? Crick et al. [1] have then proposed that only 20 among 64 trinucleotides code for the 20 amino acids. Such a bijective code implies that the coding trinucleotides are found only in one frame. Such a particular code is called a comma-free code (CFC) or a code without commas. However, the determination of a set of 20 trinucleotides forming a comma-free code has several constraints:
(i) A trinucleotide with identical nucleotides must be excluded from such a code. Indeed, the concatenation of $A A A$ with itself, for example, does not allow the reading (original) frame to be retrieved as there are three possible decompositions: ...AAA, $A A A, A A A, \ldots, \ldots A, A A A, A A A, A A \ldots$ and $\ldots A A, A A A, A A A, A \ldots$ (the commas showing the construction frame).
(ii) Two trinucleotides related to circular permutation, for example, $A A C$ and $A C A$, must be also excluded from such a code. Indeed, the concatenation of $A A C$ with itself, for example, also does not allow the reading frame to be retrieved as there are two possible decompositions: $\ldots A A C, A A C, A A C, \ldots$ and $\ldots A, A C A, A C A, A C \ldots$.

[^0]Therefore, by excluding $A A A, C C C, G G G$ and $T T T$ and by gathering the 60 remaining trinucleotides in 20 classes of three trinucleotides such that, in each class, three trinucleotides are deduced from each other by circular permutations, e.g. $A A C, A C A$ and $C A A$, a comma-free code has only one trinucleotide per class and therefore contains at most 20 trinucleotides. This trinucleotide number is identical to the amino acid one, thus leading to a comma-free code assigning one trinucleotide per amino acid without ambiguity. Some investigations have been proposed by Golomb et al. [2,3]. However, the determination of comma-free codes and their properties are unrealizable without computer as there are billions of potential codes. Furthermore, in the late fifties, the two discoveries that the trinucleotide $T T T$, an excluded trinucleotide in a comma-free code, codes for phenylalanine [4] and that genes are placed in reading frames with a particular start trinucleotide, have led to the concept of comma-free code over the alphabet $\{A, C, G, T\}$ being given up. For several biological reasons, in particular the interaction between mRNA and tRNA, this concept is taken again over the purine/pyrimidine alphabet $\{R, Y\}$ (purine $=R=\{A, G\}$, pyrimidine $=Y=\{C, T\})$ with two comma-free codes for primitive genes: $R R Y[5]$ and $R N Y(N=\{R, Y\})[6]$.

By analysing the trinucleotide occurrence frequencies in the three frames of genes, several circular codes, but no comma-free codes, have been identified in genes [7-10]. A circular code also allows the reading frames of genes to be retrieved but with weaker conditions compared to a comma-free code. It is a set of words over an alphabet such that any word written on a circle (the next letter after the last letter of the word being the first letter) has at most one decomposition into words of the circular code.

This paper studies comma-free codes of length three on the four-letter alphabet, i.e. comma-free codes associated with trinucleotides in the gene structure. New varieties of comma-free codes CFC are defined and analysed such as self-complementary comma-free codes (CCFC), C^{3} comma-free codes ($C^{3} \mathrm{CFC}$), C^{3} self-complementary comma-free codes ($C^{3} \mathrm{CCFC}$), maximal comma-free codes (MCFC), self-complementary maximal comma-free codes (CMCFC), C^{3} maximal comma-free codes ($C^{3} \mathrm{MCFC}$) and C^{3} self-complementary maximal comma-free codes ($C^{3} \mathrm{CMCFC}$). These varieties of comma-free codes could explain the origin of circular codes in genes.

2. Definitions

The definitions hereafter are useful in order to introduce the different varieties of comma-free codes.

2.1. Genetic sequences

The letters (or nucleotides or bases) of the genetic alphabet, denoted by β_{4}, are A, C, G and T.
The set of nonempty sequences (resp. sequences) on β_{4} is denoted by β_{4}^{+}(resp. β_{4}^{*}). The set of the 16 sequences of length two (or diletters or dinucleotides) is denoted by β_{4}^{2}. The set of the 64 sequences of length three (or triletters or trinucleotides) is denoted by β_{4}^{3}.

The total order on the alphabet $\beta_{4}=\{A, C, G, T\}$ is $A<C<G<T$. Consequently, β_{4}^{+}is lexicographically ordered: given two words $u, v \in \beta_{4}^{+}$, u is smaller than v in the lexicographical order, noted $u<v$, if and only if either u is a proper left factor of v or there exist $x, y \in \beta_{4}, x<y$, and $r, s, t \in \beta_{4}^{*}$ such that $u=r x s$ and $v=r y t$.

Let $w=w[0] w[1] w[2] \ldots w[i] \ldots w[j] \ldots w[n]$ a word of length $n+1$ on β_{4}. Then, we say that the factor $w[i] \ldots w[j]$ is in frame $f \in\{0,1,2\}$ if $i=f \bmod 3$.

2.2. Two important maps

(i) The complementarity

$$
\mathcal{C}: \beta_{4}^{+} \rightarrow \beta_{4}^{+}
$$

is an involutional antiisomorphism of β_{4}^{+}given by

$$
\mathcal{C}(A)=T, \quad \mathcal{C}(T)=A, \quad \mathcal{C}(C)=G, \quad \mathcal{C}(G)=C
$$

and naturally

$$
\mathcal{C}(u v)=\mathcal{C}(v) \mathcal{C}(u)
$$

for any $u, v \in \beta_{4}^{+}$.

https://daneshyari.com/en/article/471181

Download Persian Version:
https://daneshyari.com/article/471181

Daneshyari.com

[^0]: * Corresponding author. Tel.: +33 390244462.

 E-mail addresses: michel@dpt-info.u-strasbg.fr (C.J. Michel), pirillo@math.unifi.it (G. Pirillo), map@conmet.it (M.A. Pirillo).

