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a b s t r a c t

A novel immersed boundary–lattice Boltzmann method (IB–LBM) is proposed for incom-
pressible viscous flows in complex geometries. Based on themomentum exchanged-based
IB–LBM, an iterative technique is introduced to enforce the non-slip boundary condition at
the boundary points.Moreover, the proposed IB–LBMovercomes the drawback that the nu-
merical results of the previous work (Wu and Shu, 2009) which is affected by the distribu-
tion of Lagrangian points. A simple theoretical analysis is developed to obtain the optimal
iteration parameters. Numerical results show that the present scheme has second-order
accuracy and is not affected by the distribution of Lagrangian points. It also shows that the
non-slip boundary condition is satisfied on the boundary. This verifies that our IB–LBM is
capable of simulating flow problems with complex boundaries.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The efficiency of numerical methods depends on the quality of the mesh. Compared with the complex unstructured
grids, generating a Cartesian grid is very simple. Cartesian grid methods which are applied widely in numerical simulation
are easy to be implemented aswell as adopting fast algorithms. However, Cartesian grid techniques are difficult to effectively
simulate flow problems in complex geometries. In recent years, the immersed boundary method (IBM) has received a
great attention for its simplicity. IBM was first introduced by Peskin [1] to solve the problem of blood flow in the heart.
This method applies a set of Lagrangian points to represent the complex boundaries. And the governing equations of flow
field can be discretized and solved on a Cartesian Eulerian grid. The interaction between Eulerian points and Lagrangian
points is calculated in terms of distribution and interpolation operations by using the smoothed Dirac delta function. When
boundaries move, this scheme only needs to track the positions of Lagrangian points. Thus IBM simplifies the treatment of
complex boundaries and improves the computational efficiency greatly.

The key issue of IBM is the calculation of force density at the boundary points. IBM now has been developed into a
major category of algorithms. Several recent influential works about it are introduced in the following. Goldstein et al. [2]
proposed a feedback-forcing formulation which needs to adjust two free parameters and also requires a small time step.
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Lai and Peskin [3] developed a formal second-order accuracy IBM by applying the penalty method and high-order Dirac
delta function. However, it does not achieve truly second-order accuracy. Fadlun et al. [4] proposed a direct-forcing scheme
which is used widely because it does not have any free parameters and allows a large time step. Kim et al. [5] developed an
IBM by introducing a mass source/sink as well as momentum forcing which is based on the finite-volume approach. Roma
et al. [6] studied an adaptive version of IBM in order to enhance the accuracy of IBM by using a coupled multilevel adaptive
technique. Griffith et al. [7] proposed another adaptive version of IBM to enhance boundary layer resolution.

IBM is a solver for the boundary condition,which can be combinedwith any fluid solvers. As an alternative computational
method for the conventional N–S (Navier–Stokes) solver, the lattice Boltzmannmethod (LBM) is based onmesoscopicwhich
can be derived from LGA (Lattice gas automata) [8]. And it can also be viewed as a finite difference scheme of the continuous
Boltzmann equation [9]. Compared with the N–S solver, LBM is a particle-based method, so it has intrinsic superiority for
parallel computing. Moreover, it need not to solve the Poisson equation for the pressure field. Furthermore, the program
implementation of LBM is relatively easy. Thus, this method is popular in recent years.

The combination of IBM and LBM (IB–LBM) has received wide attention for its efficiency. Feng et al. [10] had done a
pioneering work for the coupling algorithm. They successfully simulated some fluid–structure interaction problems. In the
early work, they calculated the interaction force between fluid and particles by the penalty method which introduces a
user-defined spring parameter. Then they proposed the direct method without free parameters [11]. Soon afterwards Niu
et al. [12] proposed a momentum exchanged-based IB–LBM to simulate some incompressible viscous flow problems. The
version of this IBM is very simple and the force density is calculated by using the momentum exchange rules. The ideas
of the direct-forcing and the momentum-exchange are simple and physically plausible. However, as explicit schemes, the
non-slip boundary condition is often unable to be satisfied on the boundary. The direct consequence is that streamlines
penetrate the immersed boundary. Recently, Wu et al. [13] proposed a boundary condition-enforced IBM. Their basic idea
is that the corrected velocity field satisfies the non-slip boundary condition. This method is an implicit scheme. Wu et al.
apply thismethod to simulate a variety of flow and heat transfer problems [14–16]. However, the coefficientmatrix has been
introduced in this scheme. As a result, excessive Lagrangian points would increase the condition number and singularity of
the coefficient matrix. And the linear algebraic equation would be difficult to solve. This is a drawback of this method.

The purpose of this paper is to construct a novel robust IB–LBM. We propose the version of IB–LBM which is based on
the following principles:

• The non-slip boundary condition must be satisfied on the boundary.
• The performance of IBM is not affected by the distribution of Lagrangian points.

The foundation of the present method is the momentum exchanged-based IBM [12]. In order to enforce the non-slip
boundary condition on the boundary, an iterative method is introduced. The iterative technique is first proposed by Luo
et al. [17,18] in their IBM. In our iterative method, the incremental of force density is calculated by using the momentum
exchanged rules. By choosing an appropriate relaxation parameter, we can prove that the iteration converges. Because the
present IB–LBM avoids the procedure of matrix inversion, the performance of this method is not affected by the distribution
of Lagrangian points. Thus, the present method is robust.

2. Numerical method

2.1. Review of the immersed boundary method and lattice Boltzmann method

As shown in Fig. 1, a two-dimensional domain Ω for the viscous incompressible flows is considered. It contains a closed
immersed boundary, which divides the flow domain into internal and external areas. In accordance with the previous
approaches, internal and external areas are the same as the computational domain. The effect of immersed boundary is
loaded as a force term in the momentum equation. The macroscopic governing equations can be written as

∇ · u = 0, (1)

ρ


∂u
∂t

+ (u · ∇)u


= −∇p + µ∇
2u + f, (2)

with the boundary condition on Γ

u(X(s, t)) = UB(X(s, t)), (3)

where ρ,u, p represent density, velocity and pressure, respectively, and UB is the velocity on the immersed boundary.
Physical parameter µ is the dynamics viscosity. f denotes the force term which comes from the immersed boundary, and it
can be expressed as

f(x, t) =


Γ

F(X(s, t))δ(x − X(s, t))ds, (4)

where x is the coordinate of Eulerian node, and X is the coordinate of Lagrangian node. F(X(s, t)) is the force density on the
immersed boundary, and δ(x − X(s, t)) denotes the Dirac delta function.
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