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a b s t r a c t

In this paper, we first introduce the fractional biharmonic equation and an orthogonal
system of basis functions for the space of continuous functions on the interval [0, L],
generated by the shifted Chebyshev polynomials. Moreover, we propose a computational
methodbased on the operationalmatrix of fractional derivatives of these basis functions for
solving the fractional biharmonic equation. Themain characteristic behind this approach is
that it reduces the problem under consideration to solving a system of algebraic equations
which greatly simplifies the problem. Convergence of the shifted Chebyshev polynomials
expansion in two-dimensions is investigated. Also the power of this manageable method
is illustrated.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

An important class of partial differential equations (PDEs) which arises in both physics and engineering is the biharmonic
equation, i.e.:

△
2 u = f , onΩ,

u = g, on Γ ,
∂u
∂n

= h, on Γ ,
(1)

where △ =
∂2

∂x2
+

∂2

∂y2
, Ω is the bounded simply connected domain of which Γ is its boundary, ∂u

∂n is the outward normal
derivative on Γ , and f , g and h are the known functions.

The biharmonic equation arises in the modeling of many engineering applications. For example, the bending behavior
of a thin elastic rectangular plate, as might be encountered in ship design and manufacture, or the equilibrium of an elastic
rectangle can be formulated in terms of the biharmonic equation. Also Stokes flow of a viscous fluid in a rectangular cavity
under the influence of the motion of the walls can be described in terms of the solution of this equation. A more recent
application of the biharmonic equation has been in the area of geometric and functional design, where it has been used as a
mapping to produce efficientmathematical descriptions of surfaces in a physical space. It isworthmentioning that problems
involving high-order PDEs are more difficult to solve than the second-order PDEs, so numerical methods are of significant
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interest and importance in the study of numerical solutions for them. In recent years, several approaches for the numerical
solution of the biharmonic equation have been considered [1–12].

Fractional differential equations are generalized from integer order ones, which are obtained by replacing integer order
derivatives by fractional order ones [13]. In comparison with integer order differential equations, the fractional differential
equations show many advantages over the simulation of natural physical processes and dynamical systems [14–19]. The
utility of fractional partial differential equations inmathematicalmodeling has attractedmuch attention in recent years [20].
There are different effective methods for solving fractional partial differential equations such as the fractional complex
transform, the homotopy perturbation method, the variational iteration method, the heat-balance integral method and
others (see [20] and references therein). Recently Chen et al. have proposed the Kansa method which belongs to the
RBF collocation method for solving fractional diffusion equations [21]. In [22] Guang et al. proposed the finite difference
method for solving variable-order time fractional diffusion equation. In [23] Fu et al. have proposed the Laplace transformed
boundary particlemethod for solving time fractional diffusion equations. In this paper we consider the biharmonic equation
(1) with fractional derivatives in the domainΩ , concerning the solution u(x, y) satisfying the equation:

△
2
α,β u = f , onΩ,

u = g, on Γ ,
∂u
∂n

= h, on Γ ,
(2)

where △α,β = xDα∗ + yD
β
∗ , and the fractional order is 1 < α, β ≤ 2, and

xDα∗u(x, y) =
1

Γ (2 − α)

 x

0

u′′(s, y)
(x − s)α−1

ds, (3)

and

yDβ∗u(x, y) =
1

Γ (2 − β)

 y

0

u′′(x, s)
(y − s)β−1

ds, (4)

are fractional Caputo derivatives [24]with respect to the space variables x and y, respectively. It ismentionable that Caputo’s
derivative has the useful property as, Dα

∗
c = 0, in which c is a constant and also

xDα∗x
n

=


0, n < ⌈α⌉, n ∈ Z+

Γ (n + 1)
Γ (n + 1 − α)

xn−α, n ≥ ⌈α⌉, n ∈ Z+,
(5)

where we use the ceiling function ⌈α⌉ to denote the smallest integer greater than or equal to α. For more details about
fractional calculus and its properties see [24].

A usual way to solve functional equations is to assume that the unknown solution of the problem can be approximated
by a linear combination of the basis functions. These basis functions can be for instants orthogonal or non orthogonal.
The orthogonal polynomials can be chosen according to their special properties, which make them particularly suitable
for the problems under study. Therefore, approximation by orthogonal families of basis functions has been found to be of
wide applications in science and engineering. In recent years, the most commonly used orthogonal families of functions are
sine–cosine functions, block pulse functions, Legendre, Chebyshev and Laguerre polynomials and also orthogonal wavelets
for example Haar, Legendre, Chebyshev and CAS wavelets [25–34]. The main advantages of using an orthogonal basis is
that the problem under consideration is reduced to a system of linear or nonlinear algebraic equations. This act not only
simplifies the problem enormously but also speeds up the computational work during the implementation. This work can
be done by truncating the series expansion in orthogonal basis functions for the unknown solution of the problem and using
the operational matrices [34]. There are two main approaches for numerical solution of fractional differential equations:

One approach is based on converting the underlying fractional differential equations into fractional integral equations,
and using the operational matrix of fractional integration, to eliminate the integral operations and reducing the problem
into solving a system of algebraic equations. Another useful approach is based on using the operational matrix of fractional
derivative to reduce the problem under consideration into a system of algebraic equations, and solving this system to obtain
the numerical solution of the problem. The operational matrix of fractional derivative is given by:

xDϑ∗Ψ (x) ≃ DϑΨ (x), (6)

where Ψ (x) = [ψ0(x), ψ1(x), . . . , ψM(x)]T , in which ψi(x) (i = 0, 1, . . . ,M) are orthogonal basis functions which are
orthogonal with respect to a specific weight function on a certain interval [a, b] andDϑ is the operationalmatrix of fractional
derivative of order ϑ of Ψ (x). It is well known that we can expand any smooth function in terms of the eigenfunctions of
certain singular Sturm–Liouville problems such as Legendre, Chebyshev, Laguerre and Hermite orthogonal polynomials.
In this manner, the truncation error approaches zero faster than any negative power of the number of basic functions
which is used in the expansion [35]. This phenomenon is usually referred to as ‘‘exponential rates of convergence/spectral
accuracy’’ [35].
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