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a b s t r a c t

The first order system least squares method for the Stokes equation with discontinuous
viscosity and singular force along the interface is proposed and analyzed. First, interface
conditions are derived. By introducing a physical meaningful variable such as the veloc-
ity gradient, the Stokes equation transformed into a first order system of equations. Then
the continuous and discrete norm least squares functionals using Legendre and Chebyshev
weights for the first order system are defined. We showed that continuous and discrete
homogeneous least squares functionals are equivalent to appropriate product norms. The
spectral convergence of the proposedmethod is given. A numerical example is provided to
support the method and its analysis.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Inmany applications in fluid and bio-fluidmechanics, it is necessary to solve the incompressible Stokes or Navier–Stokes
equations with discontinuous viscosity and singular forces. One example is Peskin’s immersed boundarymodel that was in-
troduced to simulate the blood flow in a human’s heart [1]. In this paper,we consider the Stokes equationwith discontinuous
viscosity and singular force, that can be written as

−ν1u + ∇p = f + gδΓ inΩ,
∇ · u = 0, inΩ,
u = 0, on ∂Ω,

(1.1)

where u is the velocity vector, p is the pressure, and f is the external force function. The domain Ω is an open bounded
domain separated into two sub-domains Ω1 and Ω2, by curve Γ , such that Ω = Ω1 ∪ Ω2 ∪ Γ . Here, Γ is referred to as
interface. The boundary ofΩ is denoted by ∂Ω . Let ∂Ω1 = Ω1 ∩ ∂Ω and ∂Ω2 = Ω2 ∩ ∂Ω . The function g is force density
defined only on the interface Γ and δΓ is 2-dimensional delta function with the support along the interface Γ . We assume
that the viscosity ν is piecewise constant, defined by

ν(x, y) =


ν1, if (x, y) ∈ Ω1,
ν2, if (x, y) ∈ Ω2.

The uniqueness of p can be achieved by imposing average zero, i.e.,

Ω
pdx = 0. The existence and uniqueness of the weak

solution of (1.1) can be found in [2,3]. It is well known that pressure is discontinuous and velocity continuous but non-
smooth along the interface, due to the presence of singular source term and discontinuous viscosity coefficient. We call it as
the Stokes interface problem. A lot of methods such as finite difference, finite element and finite volume method have been
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proposed for the case of continuous viscosity with singular source term without least squares method [4]. However, for the
discontinuous viscosity, the jump condition for velocity and pressure is coupled, and getting accurate numerical solution is
quite difficult. To overcome this problem, a plethora of works have been done to get accurate approximate solution [5,4].
Peskin’s immersed boundary model that was introduced to study the fluid dynamics of blood flow in the human heart [1]
is one of the most successful Cartesian grid methods. The method has been developed and applied to many biological prob-
lems. The immersed boundary method [6–8] has been used for problems with non-smooth but continuous solution which
is only first order accurate. The immersed interface method which is second order accurate was developed by Leveque and
Li [9] for the elliptic interface problem and then generalized to the Stokes problem [4]. The authors in [10] introduced two
augmented variables that are defined only along the interface so that the jump conditions can be decoupled and the im-
mersed interface method can be applied [9]. They got the second order immersed interface method using finite difference
discretization. Rutka [11] developed the explicit jump immersed interfacemethod (EJIIM) for two-dimensional Stokes flows
on irregular domains which is up to second order derivatives along the interface. The authors in [12], using finite volume
methods, reshaped immersed boundary cells and used polynomial interpolating functions to approximate the fluxes and
gradients on the faces of the boundary cells which is second order accurate. However, in order to get second order accuracy
in the above-mentionedmethods, the jump condition in solution and the normal derivative are needed. Interface conditions
for continuous viscosity can be found in [13,4] and for discontinuous viscosity in [5]. These interface conditions include the
coupled interface condition for pressure and velocity, and zero’s, first and second order derivative of velocity and pressure.
The numerous number of interface conditions as well as being coupled make it difficult to use the first order system least
squares method for the Stokes interface problem. In this paper, we derive interface conditions which include: zero’s order
for velocity (continuity of velocity) and the first order coupled interface condition for pressure and velocity.We use only two
interface conditions and get accurate results. Y. Cao andM. D. Gunzburger [14] used the least squares finite elementmethod
to approximate the solution of elliptic interface problem by adding integral of interface conditions to the least squares func-
tional. Authors in [15] used the first order system least squaresmethod for Stokes–Darcy flowwith Beavers–Joseph–Saffman
conditions, by adding L2-norm residual of interface conditions to the least squares functional. In a recent work in [16], au-
thors derived optimal convergence of higher order finite element methods for elliptic interface problems in which error
estimates are expressed in terms of the approximation order and a parameter δ that quantifies the mismatch between the
smooth interface and the finite element mesh.

In one hand, the accuracy of spectral methods, which employ the global polynomial for discretization, makes it a popular
method to approximate solutions of partial differential equations. The spectral collocation method also has been used to
approximate the solution of interface problems. Shin and Jung [17] presented the spectral collocation method for one-
dimensional interface problems. Hessari and Shin [18] have developed an algorithm to approximate the solutions of second
order elliptic interface problems. On the other hand, the least squares method has received much attention in past decades,
due to its advantageous features. Among the advantages of least squares method is that the choice of approximation spaces
for velocity and pressure is not subject to the LBB compatibility condition and one can use the equal order interpolation
polynomials to approximate all variables. In addition, the algebraic system which must be solved to compute the discrete
solution is always symmetric and positive definite and can be easily preconditioned. This allows us to use an efficient
iterative scheme such as the preconditioned conjugate gradient method.

I combined least squares and spectral collocation methods to approximate the solution of the incompressible Stokes
equations (1.1). To employ least squares spectral collocation method for the Stokes interface problem, I extend the
methodology presented in [19,20]. To do this, I first apply finite element argument to the problem (1.1), to derive interface
conditions and Stokes equations in each sub-domain separately. The Stokes equation in each sub-domain is transformed
into the first order system and then extended by some identities. The least squares functional is defined by summing up the
squared L2-norm of residual of extended first order system and squared L2-norm of coupled jump condition for pressure
and velocity, scaled by the viscosity constant. The jump condition for velocity (continuity of velocity across interface) is
imposed into the velocity solution space. Actually, the velocity solution space includes the essential boundary condition and
velocity jump condition. The homogeneous least squares functionals are shown to be equivalent to appropriate norm and
the methods have spectral convergence. We also note that the analysis given here is for arbitrary domainΩ; however, the
numerical experiment is done only for rectangle domain with straight line interface. In the case of curved interface, one can
use the Gordon–Hall transformation (see [21,22,18,23] for more details).

The content of this paper is organized as follows. In the following section, we give some preliminaries which are useful in
the sequel. Interface conditions are derived in Section 3. The first order system of equation for the Stokes interface problem
is given in Section 4, including the ellipticity and coercivity of the least squares functional. Section 5 includes the discrete
first order system least squares method and its spectral error discretization. Implementation and numerical experiment are
presented in Section 6. We finalize the paper in Section 7 by some conclusions.

2. Preliminaries

In this section, we use the standard notations and definitions for theweighted Sobolev spacesHs
w(D), s ≥ 0 associated to

weighted inner products (·, ·)s,w , and respective weighted norms ∥ · ∥s,w , wherew(x, y) = ŵ(x)ŵ(y) is either the Legendre
weight function with ŵ(t) = 1 or the Chebyshev weight function with ŵ(t) =

1
(1−t2)1/2

, where D = (−1, 1)2. The space
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