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a b s t r a c t

In this paper, we propose and study the dynamics of a diffusive prey–predator model
with general functional response and stage-structure for the prey. Firstly, we consider the
asymptotical stability of equilibrium points and Hopf bifurcation for the reduced ODE sys-
tem. Secondly, the existence and uniform boundedness of global solutions and stability of
equilibrium points for the corresponding reaction–diffusion system are discussed. Finally,
we establish the existence and the nonexistence of nonconstant positive steady states of
this reaction–diffusion system, which indicates the effect of large diffusivity. Our results
shows the importance of the diffusion rate of the predator species (i.e., d3). The large diffu-
sion rate of the predator alone will help the generation of patterns. However, a large diffu-
sion rate of the immature prey species or a large diffusion rate of the mature prey species
can lead to the nonexistence of spatial patterns.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction and the mathematical model

Many kinds of predator–prey models have been studied extensively (see, [1–4]). In the natural world, there are many
species whose individual members have a life history that takes them through two stages: immature and mature. In partic-
ular, we have in mind mammalian populations and some amphibious animals, which exhibit these two stages. Population
growth models that include age stage or body size structure often predict complex population dynamics. Due to the above
realistic evidences, the stage-structured models have received much attention in recent years, see, [4–22] and the refer-
ences therein. Generally speaking, population growthmodels that include stage structure predict more complex population
dynamics than those without taking these factors into account.

In [5], the authors have proposed and investigated the following of a Lotka–Volterra predator–prey model with prey-
stage structure

dx1
dt

= Bx2 − Cx1 − D1x1 − γ x21 − kx1y, t > 0,

dx2
dt

= Cx1 − D2x2, t > 0,

dy
dt

= y(−D3 + δ1kx1 − ηy), t > 0,
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where x1, x2 are the population densities of immature and mature prey species, respectively. y denotes the density of
predator population.B, C,D1,D2,D3, γ , δ1 are positive constants.B represents the birth rate of the immature prey,C denotes
the transmission rate from immature prey individuals, γ is the intra-specific competition rate of the immature prey, D1 and
D2 represent the death rates of immature andmature prey, respectively.D3 is the death rate of predator, δ1 is the conversion
rate. Predators may be generalists that consume prey species other than the one in themodel, or specialists that depend exclusively
on the prey species in themodel. Generalist predators can survive evenwhen the prey species is not present. Inmodels for generalist
predators that means the linear growth term should be positive (namely, η > 0). For specialist predators, the predator cannot
survive without the prey, so the predator population will go to zero if the prey is not present. At this moment, η = 0. Hence, η is
nonnegative constant.

On the other hand, in order to understand the dynamics of a predator–preymodel involves not only the size and structure
of the population, but also the ability to capture prey and renew itself. One significant component of the predator–prey
relationship is the predator functional response, i.e., the rate of prey consumption by an average predator. Generally, the
functional response can be classified into two types: prey-dependent and predator-dependent. Prey-dependent indicates
that the functional response is only a function of the prey density, while predator-dependent means that the functional
response is a function of both the prey and the predator densities. The classical Holling types I–III, the Holling type IV
(or Monod–Haldane type), the Ivlev type and Rosenzweig type are strictly prey-dependent functional responses; ratio-
dependent type, Hassell–Varley type, Beddington–DeAngelis type as well as Crowley–Martin type are predator-dependent
functional responses. We note that an important factor in modeling of predator–prey is the choice of functional responses
governing the prey–predator interactions.

Motivated by the papers in [5], in this paper we propose a diffusive prey–predator model with stage structure for the
prey. Let X and y be densities of prey and predator, respectively. A Lotka–Volterra prey–predatormodel with logistic growth
in the prey and Malthusian decay and with in the predator general functional response is

dX
dt

= EX − FX2
− φ(X)y, t > 0,

dy
dt

= y(−D3 + δ1φ(X)), t > 0.
(A)

Now, we divide prey X into two parts: the immature x1 and mature x2, and so X = x1 + x2. In the real world, predator
consumes immature prey in general. For some special cases, the possibility being consumed for the immature is larger than
that for the mature. Taking into account this fact and in view for simplicity, we make the following assumptions:

(A1): The birth rate of the immature population is proportional to the existing mature population with a proportionality
constant B; for the immature population, the death rate and transformation rate of mature are proportional to the
existing immature populationwith proportionality constants C andD1; the immature population is density restriction
(γ > 0);

(A2): The immature prey do not yield offsprings;
(A3): The predator only preys on immature prey, and with generalize functional response function, which depends on the

numbers of immature prey; the predators are specialists that depend exclusively on the prey species in the model.

Under the above assumptions, we establish the ODE prey–predator model with general functional response and stage-
structure for the prey as follows

dx1
dt

= Bx2 − Cx1 − D1x1 − γ x21 − φ(x1)y, t > 0,

dx2
dt

= Cx1 − D2x2, t > 0,

dy
dt

= y(−D3 + δ1φ(x1)), t > 0.

(1.1)

Furthermore, we assume that the functional response φ(x) satisfies:

(H)′: φ(0) = 0, φ′(x) > 0(x ≥ 0), and 0 < φ(x) < L, where L is a positive constant.

The second condition in (H)′ implies that, as the prey population increases, the consumption rate of prey per predator
increases. Some explicit forms for the predator functional response that have been used are

φ(x) = L1(1 − e−px) [Ivlev (1961)];

φ(x) =
L1x

a + x
[Holling type II (1965)];

φ(x) =
L1x2

a + x2
[Holling type III (1965)];

φ(x) = L1xq(q < 1) [Rosenzweig (1971)].
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