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The distribution of volcanic features is ultimately controlled by processes taking place beneath the surface of a
planet. For this reason, characterization of volcano distribution at a global scale can be used to obtain insights
concerning dynamic aspects of planetary interiors. Until present, studies of this type have focused on volcanic
features of a specific type, or have concentrated on relatively small regions. In this paper, (the first of a series
of three papers) we describe the distribution of volcanic features observed over the entire surface of the Earth,
combining an extensive database of submarine and subaerial volcanoes. The analysis is based on spatial density
contours obtained with the Fisher kernel. Based on an empirical approach that makes no a priori assumptions
concerning the number of modes that should characterize the density distribution of volcanism we identified
the most significant modes. Using those modes as a base, the relevant distance for the formation of clusters of
volcanoes is constrained to be on the order of 100 to 200 km. In addition, it is noted that the most significant
modes lead to the identification of clusters that outline the most important tectonic margins on Earth without
the need of making any ad hoc assumptions. Consequently, we suggest that this method has the potential of
yielding insights about the probable occurrence of tectonic features within other planets.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Over the past three decades, it has been increasingly recognized that
the spatial distribution of volcanoes might provide insights concerning
the size and shape of the magma source, the mechanisms of magma
production, and the state of stress in the crust at specific locations on
Earth and other planets. Earlier studies focused on the detection of
vent alignments within a volcanic field (e.g., Lutz, 1986; Wadge and
Cross, 1988; Connor, 1990), later including also descriptions of the
degree of clustering displayed by the vents (e.g., Connor and Hill,
1995; Lutz and Gutmann, 1995; Martin et al., 2004; Weller et al.,
2006; Kiyosugi et al., 2010; Capello et al., 2012; Connor et al., 2012).
Many studies of this type have focused on determining the distribution
of volcanic vents over a single volcanic field at a time (e.g., Lutz, 1986;
Connor, 1990; Connor and Hill, 1995; Bernhard Spörli and Eastwood,
1997; Weller et al., 2006; Kiyosugi et al., 2010; Mazzarini et al., 2010;
Negrete-Aranda et al., 2010; Cebriá et al., 2011), but others have exam-
ined the spatial distribution of vents over larger areas, always
constrained by specific tectonic features such as one oceanic plate
(Conrad et al., 2011) or a particular type of plate tectonic boundary
(de Bremond d'Ars et al., 1995; Favela and Anderson, 1999). At a still
larger scale, a few descriptions of the distribution of volcanoes over
the entire planetary surface have been made, although in those cases

attention has been selectively addressed to larger volcanic edifices, or
to other types of structures assumed to be the surface expression of
specific tectonic features such as mantle plumes (e.g., Crumpler, 1993;
Crumpler et al., 1993; Crumpler and Revenaugh, 1997; Magee and
Head, 2001), or involving bodies with special constraints concerning
the mechanisms of magma production (Kirchoff et al., 2011; Hamilton
et al., 2013).

The diversity on the aim of studies devoted to explore the character-
istics of the spatial distribution of volcanic centers or vents, is also found
in relation to the tools that have been usedwith such a purpose. Among
the various tools that have been used to study the spatial distribution of
volcanism, one of the most versatile is the kernel estimation of spatial
density contours (Diggle, 1985; Silverman, 1986; Tsybakov, 2009).
Unlike othermethods aiming to detect alignments within a distribution
of volcanoes (Kear, 1964; Ancochea and Brändle, 1982; Lutz, 1986;
Wadge and Cross, 1988; Ancochea et al., 1995; Hammer, 2009;
Negrete-Aranda et al., 2010), kernel functions are useful in the context
of statistical exploratory analysis because they provide a fast and
efficient form to assess the degree of skewness and multimodality of
the data. Nevertheless, kernel functions have been limited until now
to study the distribution of volcanoeswithin the boundaries of a specific
monogenetic volcanic field, and the kernel functions used on those
studies (Cauchy, Epanechnikov and Gaussian) have been taken among
kernels originally designed to explore the characteristics of data
distributions over planar surfaces. Very recently, Cañón-Tapia (2013)
extended the list of usable kernel functions to include one specifically

Journal of Volcanology and Geothermal Research 281 (2014) 53–69

⁎ Corresponding author. Tel.: + 1 52646 1750500; fax: + 1 52646 1750559.
E-mail address: ecanon@cicese.mx (E. Cañon-Tapia).

http://dx.doi.org/10.1016/j.jvolgeores.2014.05.015
0377-0273/© 2014 Elsevier B.V. All rights reserved.

Contents lists available at ScienceDirect

Journal of Volcanology and Geothermal Research

j ourna l homepage: www.e lsev ie r .com/ locate / jvo lgeores

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jvolgeores.2014.05.015&domain=pdf
http://dx.doi.org/10.1016/j.jvolgeores.2014.05.015
mailto:ecanon@cicese.mx
http://dx.doi.org/10.1016/j.jvolgeores.2014.05.015
http://www.sciencedirect.com/science/journal/03770273


designed to study distributions of objects found over the surface of
spheres, known as the Fisher kernel. More importantly, Cañón-Tapia
(2013) showed that it is possible to take advantage of the characteristics
of the kernel method to assess the occurrence of clusters that might
have physical (geological) significance at various spatial scales, an
approach that hitherto has remained almost unexplored in the volcanic
context.

In a series of three papers, we explore the spatial patterns thatmight
be defined by the distribution of volcanic activity over the entire surface
of three bodies on our solar system (Earth, Venus and Io) by adopting
the Fisher kernel. Although the three papers adopt the same approach
to study spatial distribution patterns of volcanism at a global scale,
each of the two planets and moon presents individual challenges and
provides different insights into the dynamics of planetary interiors
that need to be addressed separately.

In this paper (the first of the series) we expand the exploratory
method described by Cañón-Tapia (2013) formalizing a methodology
that can be used in other planets to establish a hierarchy of volcano clus-
ters. The use of the methodology is illustrated by applying it to charac-
terize the global distribution of volcanoes around the Earth where it is
shown that clusters identified with this method have direct tectonic in-
terpretations that do not require the introduction of any type of ad hoc
geological or tectonic inputs during data analysis. In the second paper
(Cañón-Tapia, 2014, Insights into the dynamics of planetary interiors
obtained through the study of global distribution of volcanoes II: Tec-
tonic implications from Venus. Submitted to JVGR), the methodology
developed here is applied to explore patterns in the volcanism of
Venus. Both similarities and differences on the volcano distributions of
the twin planets are discussed on that paper, and implications of the
global volcano distribution concerning resurfacing models on that
planet are also presented there. On the third paper (Cañón-Tapia
et al., 2014, Insights into the dynamics of planetary interiors obtained
through the study of global distribution of volcanoes III: Implications
from Io. In preparation), attention is focused on the study of volcano
distribution and mechanisms of magma generation on Io.

2. Basic principles of spatial density estimations

2.1. Probability density functions and multimodality

Probability density functions (PDFs) are mathematical abstractions
that can be used to make predictions about the future outcome of a re-
petitive event for which past outcomes have been documented. From a
mathematical point of view, PDFs have well defined characteristics, and
can be represented by a formula that associates a unique output with a
unique value of a continuous variable that is used as input. The formula
might include one or more parameters that determine the general
shape and other characteristics of the PDF. The most popular PDFs are
characterized for having only one maximum value, or peak. In these
cases, the PDF is said to be unimodal, and its peak is associated to the
most probable value that a variable can take. Themost familiar example
of this type of functions is the Gaussian distribution.

In many cases the PDF might seem to have more than one peak, in
which case the function is said to bemultimodal (bimodality is a special
case of multimodality in which the number of modes is equal to two).
Multimodality on a PDFmight arise due to a combination of several sta-
tistical subpopulations, clustering of data, or even non-linear diffusion
processes (Comparini and Gori, 1986). Alternatively, it also can be
attributable to some undetected bias on the sampling or as an artifact
of data processing. Nevertheless, regardless of its origin, the identifica-
tion and correct interpretation of multimodality always represents a
dilemma.

On the one hand it is desirable to identifymultimodality when it ex-
ists, but on the other hand it is unwise to give too much importance to
apparent modes that might be caused merely by random fluctuations
in the data, or as an artifact of the sampling used to construct the PDF

(Minnotte, 1997). For this reason, different techniques have been
devised to test for the multimodality of a data set (e.g., Good and
Gaskins, 1980; Hartigan and Hartigan, 1985; Izenman and Sommer,
1988; Davies and Kovac, 2004). Unfortunately, tests of this type have
been designed for univariate data sets, and do not avoid entirely the
problems associated with the determination of multimodality in
multivariate situations (Ahmed and Walther, 2012).

For complex situations where there are few clues concerning the
number of modes expected from the distribution, it is preferably to
adopt an empirical approach in which no previous assumptions
concerning the number of modes is made. Actually, it is in those
situations where an exploratory method based on kernel functions
can become particularly useful. Thus, to fully understand the form in
which kernel functions should be applied in those cases it is convenient
to examine their properties in some detail, as done in the next section.

2.2. Basic principles of Kernel functions

A kernel function is defined to include two parts: One is an ordinary
single peaked PDF (herein called the PDF generator) and the other is a
parameter that has been variously called “weight function”, “window
width”, “bandwidth”, “smoothing parameter” or “smoothing factor”
(Silverman, 1986). Although the PDF generator ofmost kernel functions
is symmetrical around its peak, the final description of the observations
might be a non-symmetrical, multimodal PDF. The reasons for the ap-
parent independence between the PDF that describes the observations
and the shape of the PDF selected as the generator of the kernel function
reside on the procedure followed to obtain the final description of the
observations. Such a procedure consists of two main stages.

First, a “partial” PDF is associated to each and every observation
forming the original data base. Each partial PDF has the same form
than the PDF generator, it is centered at one of the observations, and
has a width determined by the specific value of the smoothing parame-
ter that has been selected by the operator. For example, if the PDF
generator is the Gaussian distribution, each of the partial PDFs centered
at each of the observations in a given data set has its maximum value at
the observation point, and it has a width that can be described by
resorting to the levels of confidencemarked by one or two standard de-
viations. Nevertheless, it must be remarked that the standard deviation
in this case does not apply to the whole collection of observations, and
in fact, there is no simple relationship between this measure of scale
and the dispersion of the data set. Thus, in order to estimate the latter,
it is necessary to find the PDF that describes the whole collection of
data first. This type of PDF is called here “the resulting” PDF (RPDF) to
distinguish it from the PDF generator and each of the individual PDFs.

The second stage on the analysis therefore consists in adding togeth-
er all the individual partial PDFs associated to each of the observations
in the data set. The sum of all the partial PDFs defines the resulting
PDF, or RPDF. The RPDF therefore depends on several parameters in-
cluding the number of observations forming thedatabase, its dispersion,
and the value of the smoothing parameter that was used to modulate
the relative contribution of each observation within the kernel genera-
tor. The last of these parameters is responsible for a characteristic of
all kernel functions: The same set of observations can be described by
an infinite number of RPDFs, each of which is created by a single value
of the smoothing parameter.

Although at first sight the multitude of RPDFs associated to a single
data set might seem a disadvantage of the method, it is actually
this characteristic of kernel functions that allows us to identify
multimodality without making ad hoc assumptions about the real dis-
tribution. To appreciate this aspect of kernel functions it is necessary
to consider that it is possible to create a series of RPDFs between two
given values of the smoothing parameter, and that each of the RPDFs
on that series might yield a different number of modes. Commonly, at
one extreme of the values of the smoothing parameter the RPDF will
have a maximum of modes equal to the number of data. At the other
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