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a b s t r a c t

We prove an a-posteriori error estimate for hp-adaptive discontinuous Galerkin methods
for the numerical solution of convection–diffusion equations on anisotropically refined
rectangular elements. The estimate yields global upper and lower bounds of the errors
measured in terms of a natural norm associated with diffusion and a semi-norm associated
with convection. The anisotropy of the underlying meshes is incorporated in the upper
bound through an alignmentmeasure.Wepresent a series of numerical experiments to test
the feasibility of this approachwithin a fully automated hp-adaptive refinement algorithm.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

We derive and numerically test a residual-based a-posteriori error estimate for hp-version discontinuous Galerkin (DG)
methods for the convection–diffusion model problem:

−ε1u + a(x) · ∇u = f (x) in Ω,

u = 0 on Γ .
(1)

Here, Ω is a bounded Lipschitz polygonal domain in R2 with boundary Γ = ∂Ω . The parameter ε > 0 is the (constant)
diffusion coefficient, the function a(x) ∈ W 1,∞(Ω)2 a given flow field, and f (x) a source term in L2(Ω). We assume that

∇ · a = 0 in Ω. (2)

For simplicity, we shall also assume that ∥a∥L∞(Ω) and the length scale ofΩ are of order one so that ε−1 is the Péclet number
of the problem. The standard weak form of the convection–diffusion equation (1) is to find u ∈ H1

0 (Ω) such that

A(u, v) =


Ω


ε∇u · ∇v + a · ∇uv


dx =


Ω

f v dx ∀ v ∈ H1
0 (Ω). (3)

Under assumption (2), the variational problem (3) is uniquely solvable.
This paper is a continuation of our work on hp-adaptive DG methods for diffusion and convection–diffusion problems.

This work was initiated in [1], where an energy norm a-posteriori error estimate was derived for hp-version DG methods
for diffusion problems in two dimensions. The key technical tool was the introduction of an hp-version averaging operator,
inspired by that of [2] for h-version DG methods. In [3], related averaging techniques were used in the numerical analysis
of continuous interior penalty hp-elements. Extensions to linear elasticity in mixed form, quasi-linear elliptic problems
and three-dimensional diffusion equations were presented in [4–6], respectively. In [7], the same averaging approach was
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Fig. 1. Anisotropic directions of rectangle K .

pursued to derive an error estimator for hp-adaptive DGmethods for convection–diffusion equations on isotropically refined
meshes. This estimator has the distinct feature that it is robust in the Péclet number of the problemwith respect to a suitably
defined error measure (i.e., it is reliable and efficient with constants that are independent of the parameter ε).

The purpose of this paper is to extend the work [7] to anisotropically refined meshes, and to present an estimator η
which yields global upper and lower bounds of the error measured in terms of a natural norm associated with diffusion
and a semi-norm associated with convection. In particular, our error measure contains the standard DG energy norm and a
variant of the dual norm introduced in [8] to measure convective effects. The constant in the lower bound is independent of
ε and the mesh size, but weakly depending on the polynomial degrees, as in many hp-version error estimators for diffusion
problems. In the upper bound, we use an alignment measure to incorporate the anisotropy of the underlying meshes in the
reliability constant; see [9–11] and the references therein. As a consequence, the upper bound depends on the elemental
aspect ratios and is not fully robust in the Péclet number, in contrast to the case of isotropic elements considered in [7].
Our analysis is valid for 1-irregularly refined rectangular elements with arbitrarily large aspect ratios, and is based on the
hp-version averaging operator of [7], but with anisotropically scaled approximation properties.

We present a series of numerical experiments to test the feasibility of this approachwithin a fully automated hp-adaptive
algorithm. Our tests indicate that internal and boundary layers are correctly captured and resolved at exponential rates of
convergence in the number of degrees of freedom. We further observe that as soon as a reasonable h-resolution of the
layers is achieved, the alignment measure is of moderate size, and the ratios of the error estimators and the energy errors
are practically independent of the diffusion parameter ε and the mesh size. In all the tests, our new hp-version anisotropic
refinement strategy outperforms similar strategies based on isotropic mesh refinement by orders of magnitude.

Let us also point out that in [12,13], a duality-based a-posteriori approach was successfully proposed and studied for
hp-adaptive DG methods for convection–diffusion problems on anisotropically refined meshes and with anisotropically
enriched elemental polynomial degrees.

The outline of the rest of the paper is as follows. In Section 2, we introduce hp-adaptive discontinuous Galerkin methods
for the discretization of the convection–diffusion problem (1). In Section 3, we state and discuss our a-posteriori error
estimates. The proof of these estimates is carried out in Section 4. In Section 5, we present a series of numerical tests
illustrating the performance of a fully automated hp-adaptive algorithm. Finally, in Section 6, we end with some concluding
remarks.

Throughout the paper, we shall frequently use the symbols . and & to denote bounds that are valid up to positive
constants, independently of the local mesh sizes, the elemental aspect ratios, the elemental polynomial degrees, and the
parameter ε.

2. Interior penalty discretization

In this section, we introduce an hp-version interior penalty DG finite element method for the discretization of Eq. (1) on
anisotropically refined meshes.

2.1. Elements and meshes

We consider (a family of) partitions T of Ω into disjoint rectangular elements {K}. Each element is the image of the
reference squareK = (−1, 1)2 under an affine elemental mapping FK . We allow for 1-irregularly refined meshes, where
each elemental edge may contain at most one hanging node located in the middle of the edge. For each rectangle K ∈ T , we
denote by v1K and v2K its two anisotropic directions, as shown in Fig. 1. With the direction vectors, we associate the matrix

MK = [v1K , v2K ]. (4)

The lengths of the direction vectors are denoted by h1
K and h2

K , respectively. Then we define the minimum and maximum
diameters of an element K by

hmin,K = min{h1
K , h2

K }, hmax,K = max{h1
K , h2

K }. (5)
We denote byN (K) the set of four vertices of K , and defineN (T ) = ∪K∈T N (K). We further split the set of all nodes into

interior nodes and boundary nodes, that is, we write N (T ) = NI(T )∪NB(T ). We denote by E(K) the set of four elemental
edges of an element K . The length of an elemental edge is denoted by hE , i.e., hE = hi

K if E is parallel to viK , i = 1, 2.
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