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Abstract 
A semi-implicit 3-D numerical formulation for solving non-hydrostatic pressure free-surface flows on an 

unstructured, sigma grid is proposed. Pressure-splitting and  semi-implicit methods are inherited and reformed from 
Casulli’s z-coordinate formulation. The non-orthogonal sigma-coordinate transformation leads to additional terms. 
The resulting linear system for the non-hydrostatic correction is diagonally dominant but unsymmetric, and it is 
solved by the BiCGstab method. In contrast with z-coordinate non-hydrostatic models, the new model fits vertical 
boundaries much better, which is important for the long-time simulation of sediment transport and riverbed 
deformation. A lock-exchange density flow is computed to determine whether the new scheme is able to simulate 
non-hydrostatic free-surface flows. The new model is further verified using the field data of a natural river bend of 
the lower Yangtze River. Good agreement between simulations and earlier research results, field data is obtained, 
indicating that the new model is applicable to hydraulic projects in real rivers. 
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1 Introduction 
The hydrostatic pressure distribution assumption is usually employed to reduce the complexity and computational 

burden of full pressure–velocity coupling problems in earlier three-dimensional (3-D) hydrodynamic models for 
free-surface flows (Blumberg and Mellor, 1987). However, this assumption is no longer valid for flows over 
abruptly-changing bed topographies, flows with sharp density gradients or short-wave motions, where the ratio of the 
vertical scale to horizontal scale of motion is not sufficiently small (Kocyigit et al., 2002). Moreover, although 
hydrostatic models can respond to the presence of bed forms and give a total resistance similar to that given by 
non-hydrostatic models, they do not capture the flow separation at the crest of dunes (Kheiashy et al., 2010). 
When including non-hydrostatic pressure effects in hydrodynamic models, it is essential to involve a costly solution of 

the 3-D Poisson equation. There were few such attempts before 1995 owing to the limited computer power at that time. 
Since then, 3-D non-hydrostatic models for free-surface flows have been intensively studied and developed in line with 
the rapid improvement in computer capacity. Many non-hydrostatic models (Casulli and Stelling, 1995; Marshall et al., 
1997; Casulli and Stelling, 1998; Casulli and Zanolli, 2002; Yuan and Wu, 2004; Hu et al., 2009) adopt the z-coordinate. 
A linear system for the discrete Poisson equation with a positively-defined and symmetric coefficient matrix is easily 
solved by sophisticated iterative solvers. However, it is difficult for the z-coordinate to fit the vertical boundaries well. 
The fixed and step-like division of the vertical domain may depress the computation accuracy and introduce stability 
problems in modeling sediment transport and riverbed deformation. 
To better fit the vertical boundaries, researchers adopt the sigma coordinate, which maps the irregular physical domain 

between the free surface and uneven bottom to a regular computational domain (Mahadevan et al., 1996; Jankowski, 
1999; Li and Fleming, 2001; Lin and Li, 2002; Kocyigit et al., 2002; Kanarska and Maderich, 2003; Heggelund et al., 
2004; Bradford, 2005; Lee et al., 2006; Berntsen and Xing, 2006; Zhang and Liu, 2006; Young and Wu, 2007; Hu et al., 
2011). At the same time, the non-orthogonal sigma-coordinate transformation introduces additional terms. The 
discretization and calculation of these terms adds extra complexity, error and computational burden to the numerical 
model. These issues have been addressed in various ways, leading to several typical formulations (a short review of 
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sigma-coordinate non-hydrostatic models is given in Appendix A). However, it is still an open issue to pursue an 
accurate, stable and efficient numerical formulation for modeling non-hydrostatic pressure free-surface flows including 
timely, variable vertical boundaries. 
We extend Casulli’s (2002) z-coordinate non-hydrostatic model to its sigma-coordinate version in this paper. The 

sediment transport model and its applications will be reported in later papers. The remaining sections are organized as 
follows. Governing equations and boundary conditions are introduced in section 2; the numerical formulation is 
described in section 3; verifications of the 3-D non-hydrostatic model are presented in section 4; discussions and 
conclusions are given in section 5. 
 
2 Governing equations and boundary conditions 
In the following, the z- and sigma-coordinate systems are respectively denoted by (x*, y*, z*, t*) and (x, y, , t). 

Applying the pressure splitting, the total pressure p(x*, y*, z*, t*) is decomposed into three parts: the barotropic and 
baroclinic contributions to the hydrostatic pressure and the non-hydrostatic pressure. The pressure splitting is expressed 
as 
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where  and 0 are respectively the water density and reference density, kg m-3; g is gravitational acceleration, m s-2; HR 
is the height of the undisturbed water surface, m; h(x*, y* , t*) and (x*, y*, t*) are respectively the bathymetry and 
water elevation measured from the undisturbed water surface, m; p and q are respectively the total and non-hydrostatic 
pressure of the water, m-2 s-2. 
Denoting the water depth D = h + , the transformation of the sigma-coordinate (x, y, , t) is given by Dz* . 

The transformation maps the irregular vertical physical domain between the free surface and the uneven bottom to the 
regular computational domain [–1, 0]. The 3-D Reynolds-averaged Navier–Stokes equations with Boussinesq 
approximation for incompressible fluids in the sigma-coordinate system are given by 
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subject to the continuity equation 
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where u(x, y, z, t), v(x, y, z, t) and w(x, y, z, t) are respectively the velocity components in the horizontal x*-direction and 
y*-direction and vertical z*-direction, m s-1; t is time, s; f is the Coriolis parameter, s–1; Kmh and Kmv are respectively the 
coefficients of the horizontal and vertical eddy viscosity, m2 s-1; and  is the vertical velocity in the sigma-coordinate 
system and is given by 
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Integrating the continuity equation from the bottom defined at  = –1 to the free-surface at  = 0 and using the 
kinematic condition at the free-surface yields the depth-integrated continuity equation, namely the free surface equation 
(FSE): 

        0
0

1

0

1
dvD

y
duD

xt
                                 (7) 

Equations (2)–(5) and (7) constitute a set of equations for the velocity components u, v and w, the free surface  and 
the non-hydrostatic pressure q. The transformation of the horizontal unstructured grid does not change the form of the 
equations, and the above governing equations are also applicable in the local coordinate system of the horizontal 
unstructured grid. 
A state equation of the form C  is used to relate the water density to the concentration “C”of a conservative 

scalar, and the system is then closed. At the riverbed, the balance between the internal Reynolds stress and the bottom 
friction shear stress gives the boundary condition 
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where the bottom friction stress is defined as
bbbbDbybx vuvuC ,, 22

0
; ub and vb are the velocity components of the 

lowest grid, m s-1; and CD is the bottom friction coefficient (Zhou et al., 2009). 



Download English Version:

https://daneshyari.com/en/article/4712544

Download Persian Version:

https://daneshyari.com/article/4712544

Daneshyari.com

https://daneshyari.com/en/article/4712544
https://daneshyari.com/article/4712544
https://daneshyari.com

