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We run a volcanic plumemodelwith uncertain boundary conditions and entrainment relatedmodel parameters.
Output variables tested for their sensitivity to the inputs are total rise height, and mass flux of particles into the
umbrella cloud or downwind plume. Boundary or source conditions are vent radius, initial velocity, grain size
mean and grain size standard deviation. Model parameters are entrainment rate, α, wind entrainment rate, β,
and wind speed.
Five sensitivitymetricswere considered. Three of these are calculated for each given point in the input parameter
space, by perturbing the input variable around fixed points. Two global sensitivity measures quantify the impact
on the output of the input over its entire uncertain domain.
We find that vent radius and initial speed have a much more profound effect on both outputs than does total
grain size distribution. Plume rise height and particle mass flux are sensitive to the entrainment parameters, α
and β, but these parameters are not of greater importance than the wind speed. This suggests that while efforts
to better characterize entrainment parameters through laboratory experiments is important, similar efforts
should be made to collect appropriate meteorological data for the region near the site of the eruption.

© 2016 Elsevier B.V. All rights reserved.
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1. Introduction

One-dimensional, numerical eruption column or plume models
(Costa et al., this volume) have found a use in estimation of the amount
of ash emplaced into the atmosphere at an estimated plume height
(e.g., Folch et al., 2008). The nature of the sensitivity of the output ash
loading or plume height to the variables and parameters that are incor-
porated in a given plumemodel is however poorly known (Scollo et al.,
2008; Degruyter and Bonadonna, 2012; Woodhouse et al., 2015, this
volume). One expects, based on previous experience, that plume height
and atmospheric loading should primarily be functions of grain size,
vent radius, and plume velocity (Sparks et al., 1997).

The eruption plume model discussed in the present contribution
was introduced by Bursik (2001). As part of a larger program of im-
provement and recasting, in the present contribution, it has been mod-
ified in a number of ways. These changes were precipitated by thework
presented in Bursik et al. (2012) and Stefanescu et al. (2014). The
changes to the original plume model are as follows. The model:

1. Has been modified to provide input to PUFF or HYSPLIT (Bursik et al.,
2013).

2. Can use radiosonde or NWP data directly to get atmospheric
parameters.

3. Can estimate atmosphere above the top of radiosonde or NWP data
used as input.

4. Can be run in stochastic mode with uncertain inputs of volcanic
boundary conditions as well as entrainment parameters and wind
speed.

5. Can be run in inverse mode to estimate source parameters.
6. Can simulate collapse behavior, to allow fountain height to be re-

corded. In these cases, there is no injection of pyroclasts from the
vent into the atmosphere.

7. Includes a refined model for plume rise height calculation.

Other changes to the model not included in the present version – to
keep it as close to the model of Bursik (2001) as possible – are the
following:

1. Modules for water have been added (Glaze and Baloga, 1996).

2. Double-precision and adaptive step-size now used.
3. Previously little-documented, optional, umbrella cloud and fallout

modules (Bursik et al., 2009) are available.

The model was originally unnamed, but was later called BENT
(Bursik et al., 2009). The present incarnation is called “puffin,” to
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emphasize the fact that it can be used to provided input to PUFF or
HYSPLIT (Bursik et al., 2013).

We concentrate herein on discussing results from running themodel
with uncertain boundary conditions and entrainment related parame-
ters in a full sensitivity analysis. The output variables to be tested for
their sensitivity to the inputs are total rise height, HT, and mass flux of
particles into the umbrella cloud or downwind plume, _mpjHB , which
are responsible for the atmospheric loading. First we introduce the cur-
rent set of equations ofmotion, and thenwe introduce themethods and
metrics to be used in the analysis. Finally, we present a consideration of
the meaning of the results.

2. Model of plume motion

The deterministic plume model was presented previously (Bursik,
2001), and is an integral, one-dimensional model for plumes that en-
train mass and momentum from the wind (Hewett et al., 1971;
Wright, 1984). Themodel includes a spectrum of pyroclasts of different
grain sizes and settling speeds that move at the same speed as the
plume gases until falling out from the plume margins. Once falling
they can be re-entrained. It is a trajectory model, and therefore well-
suited for adaptation to and coordination with meteorological models
and data. The following presentation follows that in (Bursik, 2001),
but has been explicitly modified to highlight the variables and parame-
ters that are now treated as stochastic.

2.1. Coordinate system

In the following analysis, the downwind distance is x, z is up, and s
represents the distance along the plume axis from the vent. Theta, ϑ,
is the inclination of the plume centerline to the horizon. The equations
expressing the relationship between (x,z) and (s,ϑ) are then given by:

x ¼ ∫ cosϑds; ð1Þ

z ¼ ∫ sinϑds: ð2Þ

2.2. Equations of plume motion

In plumes that are significantly affected by the wind, the entrain-
ment speed, Uε, must be a function of wind speed, V(ξ), now a sto-
chastic variable given as a function of the unit random variable, ξ,
as well as axial plume speed, U. A number of wind entrainment rela-
tionships have been investigated (see Table 2.1 in Wright, 1984, for
an older summary). Reasonable correspondence between one such
entrainment relation and experimental data has been obtained
(Hewett et al., 1971):

U∈ ¼ α ξð ÞjU−V ξð Þ cosϑj þ β ξð ÞjV ξð Þ sinϑj; ð3Þ

where α(ξ), the radial entrainment parameter and β(ξ), the wind-
entrainment parameter, are both now stochastic – but constant –
parameters. Thus, we now have three stochastic model parameters:
V(ξ) ,α(ξ) ,β(ξ). With this knowledge, henceforth the ξ will be
dropped from the description of these variables. Eq. (3) assumes
that the magnitude of the horizontal wind component is much larger
than the vertical component. The practical meaning behind V, α and
β being stochastic is that numerous, carefully selected values for
these will be substituted into the equations of motion. Among
other things, this will allow for exploration of the range of values
for the entrainment parameters from the literature. Some of these
different values may arise from near-vent phenomena, where
plume density may be five times that of the ambient atmosphere
(Sparks et al., 1997), and plume decompression occurs in the crater

(Woods and Bower, 1995), or from a Richardson number depen-
dence (Wang and Law, 2002; Kaminski and Tait, 2005).

For mass conservation (continuity) of the plume, we have:

d
ds

πb2ρU
� �

¼ 2πρabUϵ þ
XN
i¼1

dMi

ds
; ð4Þ

where b is the characteristic plume radius, ρ is the bulk plume density,
ρa is the ambient atmospheric bulk density, and Mi represents the
mass flux of pyroclasts of size fraction i within the plume. The first
term on the right-hand side represents the gain inmass flux by entrain-
ment of air, whereas the second term represents the loss ofmass flux by
fallout of pyroclasts.

The conservation ofmass flux of particles formultiple grain size frac-
tions, Mi, is given by (Ernst et al., 1996):

dMi

ds
¼ −

p̂ws

bU
Mi; ð5Þ

where p ̂ is a probability that an individual particle will fall from the
plume and ws is the settling speed of a particle in the given size class
(in the current model, i=1 to 19 for pyroclasts between 10 and −8 Φ
at 1 − Φ intervals). The probability of fallout, p̂, is a function of plume
geometry and re-entrainment (Bursik, 2001), and should have an ap-
proximately constant value of ~0.23 with no re-entrainment, based on
the geometry of plume margins in a quiescent atmosphere (Ernst
et al., 1996). Because of the strong inflow towards the plume caused
by entrainment, pyroclasts b~10 cm are, however, re-entrained at
lower heights in a plume after falling from greater heights. Fitting a
curve through experimental results for a vertical plume in a quiescent
ambient Ernst et al. (1996), a reasonable, purely heuristic, form of the
re-entrainment function, f, is:

f ¼ 0:43 1þ 0:78
F
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; ð6Þ

where F0 is the specific thermal flux at the vent, F0=b0
2U0Cv 0T0, and μ0

is the specific momentum flux at the vent, given by μ0=b0
2U0

2, and set-
tling speeds of pyroclasts, ws i is calculated as a function of height,
given atmospheric density and viscosity. With wind, Eq. (3) can be at
best a poor approximation, as the pyroclasts on the downwind side
would often not be re-entrained, given that the net horizontal wind
speed can be away from the plume. However, at low wind speed, a
zeroth-order assumption – made herein – is that the enhanced fallout
on the downwind side is balanced by an enhanced re-entrainment on
the upwind side.

The equation for conservation of axial momentum is:

d
ds

πb2ρU2
� �

¼ πb2Δρg sin ϑ

þ V cos ϑ
d
ds

πb2ρU;
� �

;

ð7Þ

where the first term on the right-hand side represents the change in
momentum caused by the component of gravitational acceleration,
Δρg=(ρa−ρ)g, in the axial direction, and the second term represents
entrainment of momentum from wind. Note that this equation is mod-
ified from that in Bursik (2001), by taking out an explicit dependence on
dMi/ds, which because the effect of loss of pyroclasts onmomentumflux
is already counted in the second term on the RHS, resulted in a doubling
of the effect of pyroclast fallout on plume dynamics. The conservation of
the radial component of momentum is given by:

πb2ρU2
� � dϑ

ds
¼ πb2Δρg cosϑ−V sinϑ

d
ds

πb2ρU
� �

; ð8Þ
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