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In this paper we propose a model to forecast eruptions in a real forward perspective. Specifically, the model
provides a forecast of the next eruption after the end of the last one, using only the data available up to that
time.We focus our attention on volcanoes with open conduit regime and high eruption frequency.We assume
a generalization of the classical time predictable model to describe the eruptive behavior of open conduit
volcanoes and we use a Bayesian hierarchical model to make probabilistic forecasts. We apply the model to
Kilauea volcano eruptive data and Mount Etna volcano flank eruption data.
The aims of the proposed model are: (1) to test whether or not the Kilauea andMount Etna volcanoes follow a
time predictable behavior; (2) to discuss the volcanological implications of the time predictable model
parameters inferred; (3) to compare the forecast capabilities of this model with other models present in
literature. The results obtained using the MCMC sampling algorithm show that both volcanoes follow a time
predictable behavior. The numerical values inferred for the parameters of the time predictable model suggest
that the amount of the erupted volume could change the dynamics of the magma chamber refilling process
during the repose period. The probability gain of this model compared with other models already present in
literature is appreciably greater than zero. This means that our model provides better forecast than previous
models and it could be used in a probabilistic volcanic hazard assessment scheme.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

One of the main goals in modern volcanology is to provide reliable
forecast of volcanic eruptions with the aim of mitigating the associated
risk. The extreme complexity and non-linearity of a volcanic system
make deterministic prediction of the evolution of volcanic processes
rather impossible (e.g. Marzocchi, 1996; Sparks, 2003). Volcanic
systems are intrinsically stochastic. In general, eruption forecasting
involves two different time scales: (1) a short-term forecasting, mostly
based on monitoring measures observed during an episode of unrest
(e.g., Newhall and Hoblitt, 2002; Marzocchi et al., 2008 among others);
and (2) a long-term forecasting, usually made during a quiet period of
the volcano, and mostly related to a statistical description of the past
eruptive catalogs (e.g. Klein, 1982; Bebbington and Lai, 1996a among
others). Here, we focus our attention only on this second issue.

In a long-term eruption forecast perspective we believe that an
incisive and useful forecast should be made before the onset of a
volcanic eruption, using the data available at that time, with the aim of
mitigating the associated volcanic risk. In other words, models
implemented with forecast purposes have to allow for the possibility

of providing “forward” forecasts and should avoid the idea of a merely
“retrospective” fit of the data available. Models for forecasting
eruptions should cover a twofold scope: fit the eruption data and
incorporate a testable forecast procedure. While the first requirement
is mandatory, the latter one is not commonly used in statistical
modeling of volcanic eruptions. By carrying out and testing a forecast
procedure on data available at the present, one could make
enhancement in the forecast matter and reveal the model limitations.

Different methods have been presented in the past years aiming at
the identification of possible recurrence or correlation in the volcanic
time and/or volume data for long-term eruption forecast. Klein (1982)
and Mulargia et al. (1985) studied the time series of volcanic events
looking at the mean rate of occurrence. Bebbington and Lai (1996a,b)
used renewal model framework in studying the eruption time series.
Sandri et al. (2005) applied a generalized form of time predictable
model to Mount Etna eruptions using regression analysis. Marzocchi
and Zaccarelli (2006) found different behavior for volcanoes with
“open” conduit regime compared to thosewith “closed” conduit regime.
Open conduit volcanoes (Mt Etna and Kilauea volcanoes were tested)
seem to follow a so-called Time Predictable Model. While closed conduit
volcanoes seem to follow a homogeneous Poisson process. De La Cruz-
Reyna (1991) proposed a load-and-discharge model for eruptions in
which the time predictable model could be seen as a particular case.
Bebbington (2008) presented a stochastic version of the general load-
and-discharge model also including a way to take into account the
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history of the volcano discharging behavior. In this paper the author
studied the time predictability as a particular case of his model with
application to Mount Etna, Mauna Loa and Kilauea data series. A
different hierarchical approach has been presented by Bebbington
(2007) usingHiddenMarkovModel to study eruption occurrenceswith
application toMount Etna flank eruptions. Thismodel is able to find any
possible underlying volcano activity resulting in changes of the volcanic
regime. Salvi et al. (2006) carried out analysis forMt Etnaflank eruption
using a non-homogeneous Poisson process with a power law intensity
using the model first proposed by Ho, 1991, while Smethurst et al.
(2009) applied a non-homogeneous Poisson process with a piecewise
linear intensity to Mt Etna flank eruptions.

In a recent paper Passarelli et al. (2010) proposed a Bayesian
Hierarchical Model for interevent time-volumes distribution using the
timepredictable processwith application to Kilauea volcano. Themodel
presents a new Bayesianmethodology for an open conduit volcano that
accounts for uncertainties in observed data. Besides, the authors present
and test the forecast ability of the model retrospectively on the data
through a forward sequential procedure. While the model seems to
produce better forecasts that some other models in the literature, it
produces fits to eruption volumes and interevent times that are too
large, reducing the forecast performances. This is due to the use of
normal distributions for the log-transformed data. This is a restrictive
distributional assumption that creates very long tails. Herewepropose a
more general modeling strategy that allows for more flexible distribu-
tions for the interevent times and volumes data.

Using the same framework of Passarelli et al. (2010), we will
model the interevent times and volumes data through distributions
with exponential decay (Klein, 1982; Mulargia et al., 1985; Bebbing-
ton and Lai, 1996a, b; Marzocchi, 1996; Salvi et al., 2006; Bebbington,
2007; Smethurst et al., 2009). This provides a general treatment of the
volume and interevent time series, hopefully improving the forecast
capability of the model. As eruptive behavior we use the Generalized
Time Predictable Model (Sandri et al., 2005; Marzocchi and Zaccarelli,
2006). This model assumes: (1) eruptions occur when the volume of
magma in the storage system reaches a threshold value, (2) magma
recharging rate of the shallow magma reservoir could be variable and
(3) the size of eruptions is a random variable, following some kind of
statistical distribution. Under these assumptions, the time to the next
eruption is determined by the time required for the magma entering
the storage system to reach the eruptive threshold. The more general
form for a time-predictable model is a power law between the
erupted volume and the interevent time:

ri = cvbi ð1Þ

where, if the parameter b is equal to unity we are in a classical time
predictable system (see De la Cruz-Reyna, 1991; Burt et al., 1994). If b
is equal to 0 the system is not time predictable. If bN1 or 0bbb1 we
have a non-linear relationship implying a longer or shorter interevent
time after a large volume eruption compared to a classical time
predictable system. The goal of the present work is to infer the
parameters of Eq. (1).

In the remainder of this paper, we focus our attention on some
specific issues: (1) to discuss the physical meaning and implications of
parameters inferred; (2) to verify if the model describes the data
satisfactorily; (3) to compare the forecasting capability of the present
model with other models previously published in literature using the
sequential forward procedure discussed in Passarelli et al. (2010). In
the first part of this paper, we will introduce the generality of the
model by considering three stages: (1) a model for the observed data;
(2) amodel for the process and (3) amodel for the parameters (Wikle,
2003). Then we will discuss how: (1) to simulate the variables and
parameters of themodel; (2) to check themodel fit; and (3) to use the
model to assess probabilistic forecast in comparison with other

statistical published models. The last part of the paper contains the
application of the model to Kilauea volcano and Mount Etna eruptive
data.

2. A Bayesian hierarchical model for time-predictability

In the following sections we present a detailed description of
our proposed model. We denote it as Bayesian Hierarchical Time
Predictable Model II (BH_TPM II), while the model proposed in
Passarelli et al. (2010) is denoted as BH_TPM. In Section 2.1 we
discuss the measurement error model. In Section 2.2 we consider a
model for the underlying process, which is based on the exponential
distribution. In Section 2.3 we discuss the distributions that are
placed on the parameters that control the previous two stages of the
model. In Section 2.4 we introduce the simulation procedure and in
Section 2.5 we consider model assessment and forecasting of volcanic
eruptions.

2.1. Data model

The dataset for this model has n pairs of observations: volumes and
interevent times denoted as dvi and dri respectively. We assume
independence between the measurement errors of interevent times
and volumes. This is justified by the fact that these two quantities are
measured using separate procedures. Dependence between times and
volumes will be handled at the process stage, following the power law
in Eq. (1). In addition, we assume that, conditional on the process
parameters the interevent times are independent within their group.
This is a natural assumptionwithin a hierarchical model framework. It
is equivalent to the standard assumption of exchangeability between
the times, which implies that all permutations of the array of times
will have the same joint distribution. Similar assumptions apply to the
volumes. Exchangeability is a weaker assumption than independence,
as independence implies exchangeability.

Our measurement error model assumes a multiplicative error for
the observations. This follows from BH_TPM where it was assumed
that

log dri

� �
= log ri + log �ri ð2Þ

with log �ri∼N(0,σDri

2 ), where σ2
Dri

= Δdri
dri

� �2

(for more details see

Passarelli et al., 2010). The analogous assumption log(dvi)=log vi+

log �vi and log �vi∼N(0,σDvi

2 ), where σ2
Dvi

= Δdvi
dvi

� �2

, was considered for

the volumes. Exponentiating on both sides of Eq. (2) we have

dri = �ri ri ð3Þ

where the observational errors �ri are multiplicative and require
appropriate assumptions for their probability distributions. The data
model is built from the distribution of �ri, as the distribution of the
observations is implied by that of the observational errors.

The error term in Eq. (3) follows a probability distribution with
positive support. We choose an inverse gamma distribution. This is a
flexible distribution defined by two parameters which will provide
computational advantages. The inverse gamma distribution for the
errors needs to satisfy two requirements: (1) reflect the fact that
observation are unbiased measurements of the true values and (2)
provide information on the measured relative error associated to the
interevent time and volume data. To achieve the previously discussed
desideratawe fix the two parameters of the inverse gammadistribution
by assuming E(�ri)=1, which corresponds to the first requirement, and
calculate var(�ri) using a delta method approximation as in Passarelli
et al. (2010), to deal with the second requirement. Specifically, from
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