
Computers and Mathematics with Applications 66 (2014) 2517–2531

Contents lists available at ScienceDirect

Computers and Mathematics with Applications

journal homepage: www.elsevier.com/locate/camwa

Adaptive optimal control approximation for solving a
fourth-order elliptic variational inequality✩

Weidong Cao a,∗, Danping Yang b

a Geological Science Research Institute, Shengli Oilfield Branch Company, SINOPEC, Dongying 257015, China
b Department of Mathematics, East China Normal University, Shanghai, 200241, China

a r t i c l e i n f o

Article history:
Received 6 February 2013
Received in revised form 26 September
2013
Accepted 29 September 2013

Keywords:
Fourth-order variational inequalities
Curvature obstacle
Optimal control problem
Adaptive finite element methods
A posteriori error estimator
A priori error estimate

a b s t r a c t

An optimal control approach is proposed to solve the fourth-order elliptic variational
inequality with curvature obstacle. It is proved that the variational inequality is equivalent
to the constrained optimal control problem. The finite element approximation of the
optimal control problem is constructed and the a priori error estimates and the equivalent
a posteriori error estimators are derived. Some numerical experiments are performed to
confirm a priori error estimates and demonstrate the effectiveness of the a posteriori
estimators.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Fourth-order elliptic variational inequalities with obstacles have been widely studied, such as variational inequalities
with curvature obstacle, displacement obstacle, and so on. There have been many researches for solving these variational
inequalities. For example, Noor and Al-Said used the finite differencemethod in [1,2], and they developed a new cubic spline
method for computing the approximate solution of a system of fourth-order boundary value problems associated with an
obstacle in [3]. Glowinski, Lions and Tremolieres used penalty and relaxation methods in [4,5], Momania, Moadia and Noor
used the decomposition method in [6], Shi andWang used non-conforming finite element methods in [7–11] to solve these
fourth order variational inequalities with obstacles. Also, Brézis and Stampacchia studied the regularity of a fourth order
variational inequality with curvature obstacle with two type of boundary conditions in [12]. Up to now, it is still a difficult
and interesting problem to solve a fourth-order variational inequality effectively.

The purpose of this article is to develop a new approach to solve a fourth-order elliptic variational inequality with
curvature obstacle. The idea is to use the adaptive optimal control approach to obtain the solution indirectly. To this end,
we translate the fourth-order variational inequality with curvature obstacle into the equivalent form, which contains two
Poisson equations and a 2rd order variational inequality. The optimality condition we obtained in this paper is equivalent to
the mixed variational form deduced by Deng and Shen in [13]. In [13], they have the priori error estimates for ∥y− yh∥H1(Ω)

and ∥u − uh∥L2(Ω) with the order h1−ε, ∀ε > 0, but in our paper, we obtained the h1 order convergence for the above two
error estimates.
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The paper is organized as follows: The notations used throughout the paper are introduced in Section 2, together with
the equivalence proof between the fourth-order variational inequality and the constrained optimal control problem, and
also the optimality conditions are given. In Section 3, we present the finite element approximation of the control problem.
In Section 4, we give the priori error estimate of y. Equivalent a posteriori error estimates with H1 norm and L2 norm are
deduced in Section 5. In Section 6, we give two numerical experiments to demonstrate our error estimates developed in
Sections 4 and 5.

2. Fourth-order variational inequality and its equivalent form

Let Ω be a convex domain in R2 with the Lipschitz boundary ∂Ω . In this paper we adopt the standard notationWm,q(Ω)
for the Sobolev spaces onΩ with norm ∥·∥Wm,q(Ω) and seminorm |·|Wm,q(Ω).We setWm,q

0 (Ω) ≡ {w ∈ Wm,q(Ω) : w|∂Ω = 0}
and denote Wm,2(Ω) (Wm,2

0 (Ω)) by Hm(Ω) (Hm
0 (Ω)). In addition, c or C denotes a general positive constant independent

of h.

2.1. Fourth-order variational inequality

Let K = {y ∈ H2(Ω) ∩ H1
0 (Ω) : 1y ≤ 0 in Ω}. Here, the condition satisfied in K is called the curvature obstacle. We

consider the following fourth-order variational inequality problem: Find y in K such that
Ω

1y∆(w − y) ≥


Ω

f (w − y), ∀w ∈ K (2.1)

where f ∈ L2(Ω) is a given function.
In engineering, the variational inequality problem (2.1) describes the curvature obstacle problem. In general it is very

difficult to solve the fourth-order variational inequality problem. In the next subsection, we translate the variational
inequality problem (2.1) into an equivalent optimal control problem, which is governed by the second order PDE, so that it
can be solved easily by using known-well adaptive finite element methods.

2.2. Equivalent optimal control problem

Define a convex set K ′ of the form:

K ′
= {u ∈ L2(Ω); u ≥ 0 (a.e.) in Ω}.

It is clear that K ′ is closed in L2(Ω). We formulate the optimal control problem equivalent to the fourth-order variational
inequality problem (2.1) in the following equivalent theorem.

Theorem 2.1. The problem (2.1) is equivalent to the following optimal control problem:min
u∈K ′


J(y, u) =

1
2


Ω

u2
−


Ω

fy


,

s.t. − 1y = u in Ω, y = 0 on ∂Ω.

(2.2)

Proof. It is clear that the minimized problem (2.2) may be represented by

min
y∈K


J(y) =

1
2


Ω

(1y)2 −


Ω

fy


. (2.3)

Obviously, J is convex. Suppose y is the solution of theminimized problem (2.3). From [5], we know the following conclusion:

J(y) = min
y∈K

J(y) ⇐⇒ J ′(y)(w − y) ≥ 0, ∀w ∈ K .

Since

J ′(y)(w − y) =


Ω

1y∆(w − y) −


Ω

f (w − y) ≥ 0, ∀w ∈ K ,

we deduce that J ′(y)(w − y) ≥ 0 for each w ∈ K is equivalent to (2.1). Then Theorem 2.1 is proved. �

Theorem 2.1 shows that one could solve the optimal control problem (2.2) instead of solving the variational inequality
problem (2.1). In the following parts we study how to solve the optimal control problem (2.2). To this end, we give a weak
formula for the state equation. Let the state space V = H1

0 (Ω) and the control space U = L2(Ω). Set

a(y, w) =


Ω

∇y · ∇w ∀y, w ∈ V ; (f , g) =


Ω

fg ∀f , g ∈ U .
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