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a b s t r a c t

A (2 + 1)-dimensional modified Heisenberg ferromagnetic system, which arises in the
motion of magnetization vector of the isotropic ferromagnet and biological pattern forma-
tion, is investigated. Via the Hirota bilinear method, multi-soliton solutions of such a sys-
tem are derived. It is proved that the system possesses theN-soliton solutions expressed in
terms of the double Wronskian determinant. Head-on and overtaking elastic interactions
are exhibited. Elastic interaction behavior between the two solitons has been interpreted
through the asymptotic analysis, namely, amplitude and velocity of each soliton remain un-
changed except for the phase shift after the interaction. Inelastic interactions including the
soliton fusion and fission between two solitons are shown. During the soliton propagation,
for the product of two fields, the soliton with the smaller amplitude can travel faster than
with the larger, while for the third field, the soliton with the larger amplitude can travel
faster than with the smaller. On the other hand, the soliton for the third field may exhibit
the solitoff-like property.With respect to the three solitons, head-on elastic interaction can
be found.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Heisenberg-type models for the spin–spin interactions have been proposed to explain the magnetic ordering in the
ferromagnetic materials [1–10]. For instance, one-dimensional J1–J2 Heisenberg models (with the ferromagnetic nearest-
neighbor coupling J1 and antiferromagnetic next–nearest-neighbor coupling J2) can be used to describe the properties for
the family of the quasi-one-dimensional edge-shared chain cuprates such as LiCu2O2, Li2ZrCuO4 and Li2CuO2 [4,5], while the
two-dimensional spin- 12 J1–J2 quantum Heisenberg models have been introduced to interpret the interplay of frustration
effects and quantum fluctuations [6,7]. Besides, the Hersenberg-type models can be applied to the investigation on the
magnetic solitons in isotropic/anisotropic ferromagnets, and on the motion of a nonplanar vortex in the circular easy-plane
magnet with a rotating inplane magnetic field [8–10].

More generally, models for the nonlinear phenomena in fluid dynamics, nonlinear optics, Bose–Einstein Condensates,
biological molecules, chemical systems, etc., can be the nonlinear evolution equations (NLEEs) [11–15]. As one kind of
the NLEEs, nonlinear Schrödinger (NLS)-type equations can be used to describe the nonlinear water waves in fluids, ion-
acoustic waves in plasmas, nonlinear envelope pulses in the fibers, pressure pulses in the artery vessels and nonlinear
Rossby waves in the atmosphere [16–18]. Thereinto, the gauge equivalent counterpart of the so-called NLS− equation
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(i.e., i qτ +qξξ −2|q|2 q = 0, where q is the complex amplitude or envelope of the wave packet, while ξ and τ are the spatial
and temporal variables) through amoving space curve formalism is the (1+1)-dimensional Heisenberg ferromagnetic (HF)
model [19–21],

S⃗t = S⃗ × S⃗xx, (1)

which arises from the motion of magnetization vector of the isotropic ferromagnet, where S⃗ = (S1, S2, S3) is the spin unit
vector, and ‘‘×’’ represents the cross product, while x and t are the spatial and temporal variables.

To describe certain nonlinear phenomena, higher dimensionalNLEEs have beenproposed [22–29]. Due to thedependence
on the additional spatial variables in higher dimensional NLEEs, more solution structuresmight be seen, such as the solitoffs,
dromions, lumps, breathers and multi-valued solitons [22]. By virtue of the prolongation structure, higher dimensional
integrable generalizations for some (1 + 1)-dimensional NLEEs can be derived [21]. An extension of Eq. (1) is the (2 + 1)-
dimensional modified HF system [26–29], as follows:

ut + uxy − uw = 0, (2a)

vt − vxy − v w = 0, (2b)

wx + (u v)y = 0, (2c)

which is associated with the (2 + 1)-dimensional NLS− equation

i.e., i qτ + qξη − 2 q


dξ

|q|2 q


η

= 0, with η the spatial

variable

, where u, v and w are the functions of x, t , as well as spatial variable y. System (2) can also be used to model the

biological pattern formation in reaction–diffusion process [29,30]. In Ref. [27], System (2) has been investigated through the
prolongation structure and Lax representation. In Refs. [28,29], integrable property of System (2) has been studied via the
Painlevé analysis, and some localized coherent and periodic solutions have been given bymeans of themulti-linear variable
separation approach.

On the other hand, for revealing the nonlinearmechanisms, it is helpful to search for the analytic solutions and investigate
the underlying dynamics of relevant NLEEs [31–34]. So far, some analytic methods have been proposed for constructing
the soliton solutions, such as the inverse scattering transformation, bilinear method, Wronskian technique and Darboux
transformation [11–15,31–34].

Among those approaches, the bilinearmethodprovides away to construct the analytic soliton solutions of aNLEE [35–52].
Based on the bilinear forms, the soliton solutions in terms of theNth-order exponential polynomial,Wronskian, Gramm and
Casorati determinants for some (1 + 1)- and (2 + 1)-dimensional NLEEs can be constructed [38–42]. Quasi-periodic and
decay mode solutions can also be obtained [43–45]. In some cases, the linear combinations of exponential traveling waves
(implying the existence of linear subspaces of solutions) can be derived [46,47]. Besides, the Wronskian technique can be
implemented to validate themulti-soliton solutions, since each column of aWronskian is the derivative of the previous one,
and higher derivatives lead to the sums of the Wronskians [48–50]. Additionally, the bilinear method can be generalized to
a kind of bilinear equations possessing the linear subspaces of solutions [51,52].

For System (2), to our knowledge, soliton solutions in terms of the Nth-order exponential polynomial, soliton interaction
and Double Wronskian Solutions have not been reported as yet. Hereby, in Section 2, with the aid of symbolic computa-
tion [53,54], multi-soliton solutions of System (2) will be derived by means of the Hirota bilinear method, and the double
Wronskian solutions will be given. In Section 3, soliton propagation and interactionwill be investigated, including the head-
on and overtaking elastic interactions, soliton fusion and fission. Section 4 will be devoted to the conclusions.

2. Multi-soliton solutions of system (2)

Via the dependent variable transformation,

u(x, y, t) =
G
F
, v(x, y, t) =

H
F
, w(x, y, t) = 2 (log F)xy , (3)

System (2) can be transformed into the following bilinear forms:
Dt + DxDy


G · F = 0, (4a)

Dt − DxDy

H · F = 0, (4b)

D2
x F · F + GH = 0, (4c)

where G(x, y, t),H(x, y, t) and F(x, y, t) are the analytic functions, and Dl
xD

m
y D

n
t is the Hirota bilinear derivative operator

[35–37] defined by

Dl
xD

m
y D

n
t a · b ≡


∂

∂x
−

∂

∂x′

l 
∂

∂y
−

∂

∂y′

m 
∂

∂t
−

∂

∂t ′

n

a(x, y, t) b(x′, y′, t ′)

x′=x, y′=y, t ′=t

,

l,m, n = 0, 1, 2, . . . , (5)
with a and b as the analytic functions, while x′, y′ and t ′ are all independent variables.
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