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a b s t r a c t

The (2 + 1)-dimensional Zakharov equations arising from the propagation of a laser beam
in a plasma are studied in this paper. Analytic soliton solutions are obtained by means of
the symbolic computation, based on which we find that |E| is inversely related to ωpe, but
positively related to mi and cs, while n is inversely related to ωpe and ωL, but positively re-
lated to n0, with E as the envelope of the high-frequency electric field, n as the plasma den-
sity, while ωpe, ωL, n0, mi and cs as the plasma electronic frequency, frequency of the laser
beam, mean density of the plasma, mass of an ion and ion-sound velocity in the plasma,
respectively. Head-on interaction is found to be transformed into an overtaking one with
ωpe increasing or n0 decreasing. Also, period of the bound-state interaction decreases with
ωL decreasing. Considering the driving forces in the laser-induced plasma, we explore the
associated chaotic motions as well as the effects ofωL,ωpe, kL, n0,mi, cs,ωF1 andωF2 , where
kL is the wave number of the laser beam, ωF1 and ωF1 represent the frequencies of driving
forces, respectively. It is found that the chaotic motions can be weakened with ωpe, cs and
ωF1 increasing, or with n0,mi and ωF2 decreasing, and the periodic motion can occur when
ωF1 reaches the critical value 2π , while the chaotic motions are independent of ωL and kL.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

When a high-power laser beam is focused onto a solid target, the target absorbs the laser energy, and then after such
target melts and evaporates, a ‘‘laser-induced plasma’’ forms at the laser-focusing area [1]. Studies on the laser-induced
plasmas and nonlinear phenomena in a laser-induced plasmahave been carried out [2–4]. Numerical codeswhich couple the
low-frequency hydrodynamics of the plasma with the propagating laser light have been developed [5]. Interaction between
the laser beam and a plasma has been studied, and relativistic electron transport in the dense matter inside the target has
been investigated [6]. Plasma waves driven by the multiple laser pulses and nonlinear regions of the interaction between
the plasma waves and laser pulses have been studied [7].

For the applications, people have proposed the laser-induced plasma accelerators, which are the techniques for
accelerating such charged particles as the electrons, positrons and ions, including the laser wakefield accelerator, plasma
beat wave accelerator and self-modulated laser wakefield accelerator [7,8]. A laser-induced plasma accelerator of only a
centimeter’s length has been found to produce the 1 GeV electron bunches which are characterized by the ≥100pC charge
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at the ∼100 MeV mean energy with the energy spread approximately few percent and divergence approximately a few
milliradians, and those electron bunches have been applied as the front-end injectors for conventional accelerators or the
drivers for short-pulse radiation sources [8,9].

To describe the propagation of a laser beam in a plasma, people have derived the (2 + 1)-dimensional Zakharov
equations [10–12]:

iEt + i
kLωL

c2
Ey +

c2

2ωL
Exx −

ω2
pe

2n0ωL
nE = 0, (1a)

ntt − c2s nxx −
ω2

pe

4πmic2
|E|

2
xx = 0, (1b)

where E, a complex function of x, y and t , denotes the envelope of the electric field, n, a real function of x, y and t , represents
the plasma density measured from its equilibrium value, y is the direction of the propagation of the laser beam, x refers to
the direction that is transversal to the beam propagation, t is the normalized time, ωL and kL represent the frequency of the
laser beam and its wave number, respectively, c is the speed of light in vacuum, ωpe is the plasma electronic frequency, n0
is the mean density of the plasma, mi represents the mass of an ion, and cs is the ion-sound velocity in the plasma [10–12].
It has been demonstrated that Eqs. (1) are locally well posed in the whole space [10]. Behaviors of the laser beam in the
plasma have been studied [11]. Through the discussions on Eqs. (1), transverse motions of the laser beam in a plasma have
been studied experimentally [12]. Exp-function method and first integral method have both been employed on Eqs. (1),
traveling and periodic waves have been found, and the properties of two-dimensional coherent structures have been
discussed [13–17].

On the other hand, it has been found that even small differences in the initial conditions, such as the rounding errors
in the numerical computation or perturbations in the background, yield the diverging outcomes, resulting in the long-
term prediction impossible [18,19]. Studies have pointed out that such nonlinear phenomena as the chaos and turbulence
have been found in the Zakharov–Kuznetsov (ZK) [20,21], sine-Gordon (SG) [22,23], Korteweg–de Vries (KdV) [24,25] and
derivative nonlinear Schrödinger (dNLS) [26–28] equations when the perturbations are taken into consideration [29–33].
Period-doubling sequences of the KdV and SG equations [18,19], quasi-period-doubling sequences of the ZK and dNLS
equations [34,35], frequency-locking of the Chen system [31–33] and intermittency of the Rossler and Chen systems [29,30]
have been introduced. In addition, effects of the forces such as the random noises, radially-symmetric azimuthal force and
periodic force in the plasmas have been studied numerically and experimentally [20,21,31–33,36].

Beyond Eqs. (1), we plan to study the following equations [12,7,36]:
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which arise in a laser-induced plasma affected by the driving forces α1 sinωF1 t and α2 sinωF2 t , with α1 and α2 as the
driving amplitudes, ωF1 and ωF2 as the driving frequencies, and F1 and F2 labeling the different forces [12,7,36]. Note that
the difference between Eqs. (1) and (2) roots in the driving forces. Experimental studies on Eqs. (2) have been done with
the plasma wavelength λp ≈ 33 µm, mean density of the plasma n0 = 1018 cm−3, and a 0.5 mJ, 4 ps laser pulse [7].
Stability analysis on Eqs. (2) has been carried out [12]. Analytic solutions and the associated nonlinearwaves for Eqs. (2) have
been obtained [36]. Generation of the bursting patterns in the Duffing oscillator with time-delayed feedback, including the
symmetric fold, fold bursting and symmetric Hopf burstingwhen the periodic forcing changes slowly, has been investigated,
and conditions of the fold bifurcation and Hopf bifurcation as well as its stability related to the external forcing and delay
have been calculated [37–40].

In this paper, we will extend the work in Refs. [10–12,7,36], with the aim of exploring the nonlinear phenomena in the
laser-induced plasma described by Eqs. (1) or Eqs. (2), e.g., the soliton propagation and interaction, effects of the plasma
parameters on the solitons, chaotic motions as well as the effects of the driving forces and plasma parameters on the chaos.
Thus, by means of the symbolic computation and Hirota method [41–45], we will derive the soliton solutions of Eqs. (1) in
Section 2. In Section 3, the soliton propagation and interaction, including the effects of the plasma parameters (e.g., ωpe, ωL
and n0) on the solitons, will be discussed. Introducing the driving forces, in Section 4, we will study the associated chaotic
motions of Eqs. (2). With the power spectra and phase projections investigated, our emphasis will be paid on the effects
of the driving forces and plasma parameters on the chaos, as well as the transitions among the different chaotic motions.
Finally, the conclusions will be in Sec. 5.
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