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line through the dam/levee body is not straightforward. For simulation purposes, mesh
generation as well as accurate and smooth alteration of the phreatic line at the junction
with the downstream slope (referred to as exit point) for an unconfined seepage problem
with complex geometry generally makes cumbersome numerical solutions. This study
presents an innovative boundary-type meshfree method to determine the phreatic line

’ésﬁg"grfs' location in unconfined seepage problems. The current study explicitly addresses the
Earth dams problem that alternative methods commonly face to deal with the exit point. The method
Method of fundamental solutions is developed based upon integrating the Method of Fundamental Solutions (MFS), Particle
Meshfree Swarm Optimization (PSO) algorithm, and Thiele Continued Fractions (TCF). To accurately
Particle Swarm Optimization estimate the phreatic line location, the proposed framework uses MFS to solve the flow
Thiele Continued Fractions continuity equation, TCF to generate the phreatic line and PSO to optimize the phreatic

line location generated by TCF. As a boundary method, MFS only deals with the boundaries
of the domain and consequently, it only takes the exact position of phreatic line as a
variable boundary. The proposed approach employs TCF to guarantee that the phreatic line
is tangent to the downstream slope at the exit point, a characteristics which is important
especially for the cases where abrupt changes occur in the phreatic line near the exit point.
For comparison and validation purposes, the phreatic lines determined by the proposed
approach for two unconfined seepage problems are compared and verified against those
obtained from alternative analytical and numerical methods as well as a set of experimental
results. An excellent agreement is demonstrated upon comparison of the proposed method
to the results attained from the analytical solutions and experimental tests.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Unconfined seepage through an earth dam or a levee is recognized as a challenging problem [ 1,2]. Determination of pore
pressures, the quantity of seepage passing through the body and foundation, and the locus of the phreatic line are critical
parameters that can significantly impact the performance of earth dams and levees. The flow continuity equation is used as
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governing equation for seepage problems. This equation can be solved using analytical and numerical approaches. However,
analytical approaches are applicable for simple geometries and several limitations are reported in literature for the use of
analytical methods for solving problems with complex geometry [3,4]. The position of the phreatic line cannot easily be
obtained and advanced numerical methods such as the Finite Element Method (FEM) have been broadly used in solving
unconfined seepage problems [5,6]. Accuracy and convergence of mesh-based methods such as FEM strongly depend on
the mesh generation technique which is used in analyses. Cividini and Gioda [7] showed that standard FEM algorithms may
result in an inaccurate and noisy phreatic line in the vicinity of a pervious boundary exposed to the atmosphere. Convergence
of the conventional mesh-based algorithms can also suffer from potential mesh distortion and subsequent singularity that
may occur due to the dynamic geometry of the phreatic line during the solution process. Though, improved mesh-based
methods such as FEM [8] and the Finite Volume Method (FVM) [9] have been developed using fixed or adaptive grids or a
combination of both to overcome the aforementioned drawbacks.

Along with recent advances in computational mechanics within the last a few decades, a new family of numerical meth-
ods called meshfree methods has been introduced and extensively utilized in engineering and applied mathematics [10-15].
Meshfree methods can provide a promising alternative for solving problems which involve iterative procedures without fac-
ing difficulties associated with the mesh generation step [15,16]. Meshfree methods use a set of scattered nodes within the
problem domain and boundaries (i.e., domain-type meshfree) or only within the domain boundaries (i.e., boundary-type
meshfree) to simulate the problem without discretization [17]. For interpolation among the scattered nodes, the Radial Ba-
sis Function (RBF) method is used as primary tool to approximate the results in both boundary- and domain-type meshfree
methods [18,19]. The Local RBF based on the Differential Quadrature (RBF-DQ) method is a domain-type meshfree method
which has recently been used in seepage analyses [20]. The radius of supporting domain, however, is constant for all nodes
and it requires special consideration along the boundaries. Since RBF-DQ is sensitive to the node locations, the constant
radius of the supporting domain can cause some shortfalls in complicated geometries. Moreover, a large number of nodes
are required in domain type meshfree methods because each single RBF does not satisfy the governing equation [21,22].
Therefore, the computational cost increases in domain-type meshfree methods. Alternatively, the Natural Element Method
(NEM) can be considered as it does not depend on the nodes location. However, NEM is not a fully meshfree method since
it relies upon Delaunay triangulation [15,23]. As a remedy for the above-discussed drawbacks and to improve the efficiency
of computational efforts, The Method of Fundamental Solutions (MFS) is introduced to solve boundary value problems with
moving geometries [24,25]. Chaiyo et al. [26] used MFS, a meshfree boundary-type method, for solving unconfined seepage
problems. Although the location of phreatic line was determined, the imposition of the phreatic line where the seepage path
exposes to the atmospheric pressure was not still easy especially where the slope of downstream is vertical. This condition
can be referred to as smooth alteration. Shahrokhabadi and Ahmadi [27] coupled MFS with the Particle Swarm Optimiza-
tion (PSO) algorithm but their solution still faced some difficulties in satisfying the smooth alteration condition at sharp
boundaries.

This paper presents a new boundary-type meshfree approach to determine the phreatic line location in unconfined
seepage problems. The current study explicitly addresses the problem that alternative methods commonly deal with the
junction of the phreatic line with the downstream slope of the domain (also referred to as exit point). At the exit point, the
phreatic line should be tangent to the downstream slope. This property is a consequence of the fact that the fluid pressure
must be atmospheric both along the phreatic line and along the downstream slope of the domain. The proposed approach is
developed based upon integrating MFS, PSO, and Thiele Continued Fractions (TCF). Employing TCF distinguishes the current
study from the previous works [23,27]. The proposed framework uses MFS to solve the flow continuity equation, TCF to
generate the phreatic line and PSO to optimize the phreatic line location generated by TCF. PSO is used to investigate
the fitness of the phreatic line location in the solution procedure. The fitness of the results is introduced as a constraint
which should be considered in the solution steps. Additional constraints are the phreatic line inclination at the exit point,
energy principles, and the value of pressure head on the phreatic line. For comparison and validation purposes, the phreatic
lines determined by the proposed approach for two unconfined seepage problems (a rectangular domain and a trapezoidal
domain) are compared and verified against those obtained from alternative numerical and analytical methods as well as a
set of experimental results.

2. Governing equation and boundary conditions

The governing equation of fluid flow in porous media can be obtained by solving the equation of continuity. The governing
equation reduces to Laplace’s equation for laminar steady-state flow in a saturated, isotropic and homogeneous domain.
Darcy’s law is used to establish the relationship between the total head, ¢, and flow velocity. As defined, ¢ is the algebraic
summation of the pressure head (%, Duw is the pore pressure, p is the density of water, and g is the gravitational acceleration)
and the elevation head (y) in any position within the domain (i.e., p = % 4+ y). As shown in Fig. 1, the boundary conditions
can be summarized as follows [28]:
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1. Impermeable boundary (Line OA): Flow velocity orthogonal to this boundary is zero (i.e., Tny

on the impermeable boundary). The impermeable boundary defines streamlines.

= 0, n, is the normal vector
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