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a b s t r a c t

An Euler–Lagrange two-phase flow model is developed to study suspended sediment transport by open-
channel flows with an Eddy Interaction Model (EIM) applied to consider the effect of fluid turbulence on
sediment diffusion. For the continuous phase, the mean fluid velocity, the turbulent kinetic energy and
its dissipation rate are directly estimated by well-established empirical formulas. For the dispersed
phase, sediment particles are tracked by solving the equation of motion. The EIM is applied to compute
the particle fluctuation velocity. Neglecting the effect of particles on flow turbulence as usually
suggested for dilute cases in the literature, the Euler–Lagrange model is applied to simulate suspended
sediment transport in open channels. Although the numerical results agree well with those by the well-
known random walk particle tracking model (RWM) and with the laboratory data for fine sediment
cases, it is clearly shown that such an Euler–Lagrange model underestimates the sediment concentration
for the medium-sized and coarse sediment cases. To improve the model, a formula is proposed to
consider the local fluid turbulence enhancement around a particle due to vortex shedding in the wake.
Numerical results of the modified model then agree very well with laboratory data for not only the fine
but also the coarse sediment cases.
& 2015 International Research and Training Centre on Erosion and Sedimentation/the World Association

for Sedimentation and Erosion Research. Published by Elsevier B.V. All rights reserved.

1. Introduction

The mechanics of sediment transport is a classical and impor-
tant subject of river and coastal engineering and has been
extensively studied in the last century. A large number of labora-
tory experiments have been performed to explore sediment
transport under both unidirectional and oscillatory flow condi-
tions (Vanoni, 1946; Dibajnia & Watanabe, 1998; Chien & Wan,
1999; Dohmen-Janssen & Hanes, 2002; Noguchi & Nezu, 2009;
Van der et al., 2010). Many numerical models have also been
developed (Elghobashi, 1994; Hsu et al., 2003; Jha & Bombardelli,
2009; Chen et al., 2011). However, the complex mechanisms of
sediment motion in a moving fluid are still far from clearly
understood.

A sediment-laden flow can naturally be treated as a two-phase
flow (Elghobashi, 1994; Dong & Zhang, 1999; Liu & Sato, 2006; Jha
& Bombardelli, 2011). The existing two-phase flow models can be
categorized into the Euler–Euler and the Euler–Lagrange type

according to their different ways to deal with the sediment
phase. An Euler–Euler model describes sediment as a continuous
phase and cares about statistical properties of the sediment
cloud, while an Euler–Lagrange model treats the sediment as a
dispersed phase and tracks the motion of each sediment particle.
Both of the models describe the water as a continuous phase,
satisfying the conservation laws for the mass and momentum. In
a practical problem, the Euler–Euler model requires significantly
less computational effort than the Euler–Lagrange one, and as a
result, there have been much more studies employing the Euler–
Euler model for sediment transport in the last decades
(Elghobashi & Abou-Arab, 1983; Dong & Zhang, 2002; Jha &
Bombardelli, 2009; Chen et al., 2011). With the rapid growth of
computer capacity, application of the Euler–Lagrange model in
sediment-laden flow has received more and more attention in
recent years, especially in the study of bed-load transport (Sekine
& Kikkawa, 1992; Lee & Hsu, 1994; Nino & Garcia, 1994; Drake &
Calantoni, 2001; Schmeeckle & Nelson, 2003; Yeganeh-Bakhtiary
et al., 2009; Ji et al., 2013). In the present paper, an Euler–
Lagrange model is developed to deal with the suspended sedi-
ment transport.

Vinkovic et al. (2011) developed an Euler–Lagrange model, with
a direct numerical simulation (DNS) for the continuous phase, to

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/ijsrc

International Journal of Sediment Research

http://dx.doi.org/10.1016/j.ijsrc.2015.03.012
1001-6279/& 2015 International Research and Training Centre on Erosion and Sedimentation/the World Association for Sedimentation and Erosion Research. Published by
Elsevier B.V. All rights reserved.

n Corresponding author. Tel.: þ86 10 62776777.
E-mail addresses: shb11@mails.tsinghua.edu.cn (H. Shi),

yuxiping@tsinghua.edu.cn (X. Yu).

International Journal of Sediment Research 30 (2015) 361–370

www.sciencedirect.com/science/journal/10016279
www.elsevier.com/locate/ijsrc
http://dx.doi.org/10.1016/j.ijsrc.2015.03.012
http://dx.doi.org/10.1016/j.ijsrc.2015.03.012
http://dx.doi.org/10.1016/j.ijsrc.2015.03.012
mailto:shb11@mails.tsinghua.edu.cn
mailto:yuxiping@tsinghua.edu.cn
http://dx.doi.org/10.1016/j.ijsrc.2015.03.012


study the characteristics of ejections that surround sediment
particles in dilute turbulent channel flows, which are important
to the movement of sediment near the bed. Jaszczur (2011) applied
large eddy simulation (LES) to turbulent flow in its Euler–Lagrange
model. Ong et al. (2012) studied the sediment movement down-
stream of a circular cylinder with the Reynolds Averaged Navier–
Stokes (RANS) equations and the standard k–ε model for the
flow field.

The Euler–Lagrange model based on the RANS method is
advantageous when compared with DNS and LES because rela-
tively less computational effort is required. However, this
approach requires an additional stochastic model for the fluctuat-
ing velocities of the fluid. The Eddy Interaction Model (EIM) used
in Oliveira et al. (2002) is an effective method. Following the study
of Hutchinson et al. (1971), the EIM has been intensively devel-
oped (e.g., Yuu et al., 1978; Gosman & Ioannides, 1981; Shuen
et al. 1983; MacInnes & Bracco, 1992). In this model, the fluid
fluctuation velocity is randomly sampled from a Gaussian distri-
bution with zero mean and with the turbulence intensity as the
standard deviation. Graham and James (1996) studied the EIM
theoretically and improved it to describe the turbulent diffusion of
particles with different inertia. It has been shown that the EIM
performs well in simulating the turbulent diffusion of particles
under various conditions (Chen & Pereira, 2000; Matida et al.,
2004; Dehbi, 2008).

The effect of the particles on fluid turbulence is an important
problem in the mechanics of sediment suspension, though it is
frequently assumed to be negligible in dilute flows (Elghobashi,
1994). A great many researchers have studied this problem (Gore
& Crowe, 1989; Yarin & Hetsroni, 1994; Crowe, 2000; Lain &
Sommerfeld, 2003). Hetsroni (1989) found that particles with
particle Reynolds number (Rep) larger than 400 tend to intensify
the fluid turbulence, while particles with Rep smaller than 400
tend to attenuate it. On the other hand, Noguchi and Nezu (2009)
pointed out that particles smaller than the Kolmogorov microscale
suppress the turbulence, whereas those larger enhance it.

In the present paper, an Euler–Lagrange two-phase flow
model coupled with the EIM is applied to study the suspended
load in dilute sediment-laden open-channel flows. The equations
of motion for sediment particles and the EIM are described in
detail in Section 2. Typical experimental results of sediment
transport in open-channel flow are described in Section 3 for
the purpose of verification of the developed numerical model.
The Random Walk particle tracking Method (RWM) is also
applied for comparison. A formula is suggested to describe the
turbulence enhancement due to particles. Conclusions are sum-
marized in Section 4.

2. Numerical model

2.1. Continuous phase

Consider the classical problem of suspended load in a two-
dimensional steady and uniform channel flow. In general, an
Euler–Lagrange model may have to solve the RANS equations in
conjunction with the standard k–ε turbulence model for Reynolds-
averaged variables of the continuous phase. However, the steady
turbulent open-channel flow has been extensively studied, and
empirical formulas that accurately describe the mean flow as well
as the turbulence statistics have been well established. For
simplicity, the carefully verified empirical formulas are used for
the carrier flow in the present study. In addition, this paper
focuses on the suspended load in dilute flow, and as a first step,
the effect of sediment particles on the flow is neglected.

For a two-dimensional steady flow, the vertical mean fluid
velocity, v, vanishes and the horizontal mean velocity, u, can be
evaluated according to the formula of Dou (1987),
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in which, un is the friction velocity; yþ ¼ yun=νf ; νf is the
kinematic viscosity of the fluid; h is the water depth. The turbulent
kinetic energy, k, and its rate of dissipation, ε, are expressed by the
formulas of Nezu and Nakagawa (1993),

k
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where ξ¼ y=h. According to Nezu (2005), the fluid turbulence can
be treated as isotropic.

2.2. Dispersed phase

Particle–particle collisions are omitted in this study since a
dilute flow is under consideration. The trajectory of a sediment
particle, xpðtÞ, is, thus, determined by

dxpðtÞ
dt

¼ upðtÞþu0
p ð4Þ

where up tð Þ is the Reynolds averaged particle velocity, and u0
p is

the velocity fluctuation. up tð Þ is governed by the equation of
motion:
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where ρf and ρp are densities of the water and the sediment,
respectively; dp is the diameter of the particle; u is the Reynolds
averaged velocity of the fluid phase; Ω¼∇� u is the vorticity of
the mean fluid flow; g is the gravitational acceleration; and CD is
the drag coefficient, given by the well-known Schiller and
Naumann (1935) formula,

CD ¼
24
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where Rep ¼ ju�up jdp=νf is the particle Reynolds number. The
four terms on the right hand side of Eq. (5) represent, respectively,
the drag force, gravity force, buoyancy, and lift acting on the
particle. Compared with these four terms, the inertia force and
Basset force are negligible and do not appear in Eq. (5).

2.3. Eddy Interaction Model (EIM)

The particle fluctuation velocity must be determined when
integrating Eq. (4), and the EIM is here applied for this purpose.
According to MacInnes and Bracco (1992), if the turbulence
intensity of the particles is assumed to be identical to that of the
carrier fluid, the particle fluctuation velocity, u0

pi, can then be
expressed by

u0
pi ¼

ffiffiffiffiffiffi
2
3
k

r
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where φi (i¼1, 2) are two independent random numbers in the
horizontal and vertical directions respectively, with zero mean and
unit variance. Note that k is the local value of the turbulent kinetic
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