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a b s t r a c t

Recently, a class of generalized shift-splitting iteration methods were proposed for solving
nonsingular nonsymmetric saddle point problems (Cao et al., 2015). In this paper, the gen-
eralized shift-splitting iteration method is extended to solve singular nonsymmetric sad-
dle point problems. Semi-convergence of the generalized shift-splitting iterationmethod is
carefully analyzed, which shows that the iterative sequence generated by the generalized
shift-splitting iterationmethod converges to a solution of the singular saddle point problem
unconditionally. Numerical results verify the robustness and efficiency of the generalized
shift-splitting iteration method.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Consider the iterative solution of large sparse nonsymmetric saddle point problems

Au =


A BT

−B 0

 
x
y


=


f
g


= b, (1.1)

where A ∈ Rn×n is nonsymmetric positive definite, B ∈ Rm×n (m ≤ n) is a rectangular matrix of rank r , f ∈ Rn and g ∈ Rm

are given vectors. When r = m, the coefficient matrix is nonsingular and the nonsymmetric saddle point problem (1.1) has
a unique solution. When r < m, the coefficient matrix is singular, and at the moment, we call (1.1) a singular nonsymmetric
saddle point problem. Moreover, in such case, we suppose that the singular saddle point problem (1.1) is consistent, i.e.,
b ∈ R(A), the range of A. Both nonsingular and singular saddle point problems arise in many areas of scientific computing
and engineering applications. We refer to [1] for an overview of its applications.

For its property of large and sparsity, the nonsymmetric saddle point problem (1.1) is suitable for being solved by the
iterative method. A number of effective iterative methods have been proposed to solve saddle point problems, such as
the Uzawa-type iterative methods [2–7], residual reduction algorithm [8], Krylov subspace methods [9,10], the Hermitian
and skew-Hermitian splitting (HSS)-like iterative methods [11–13] and so on. See also [1] for a general introduction to the
different solutionmethods. Most of these iterative methods can be used to solve both singular and nonsingular saddle point
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problems [14–16]. Recently, for solving the nonsingular nonsymmetric saddle point problem (1.1), a class of generalized
shift-splitting (GSS) iteration methods are proposed in [17]
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where α and β are two positive real parameters, and I is the identity matrix with appropriate dimension. The GSS iteration
method is based on the following matrix splitting of the coefficient matrix A

A =
1
2
(Ω + A) −

1
2
(Ω − A), with Ω =


αI 0
0 βI


. (1.3)

Theoretical analysis in [17] showed that the GSS iteration method converges to the unique solution of the nonsingular
nonsymmetric saddle point problem. In fact, the GSS iteration method is a generalization of the shift-splitting iteration
method, which was first proposed by Bai et al. [18] to solve a class of non-Hermitian positive definite linear systems.
Then it was extended by Cao et al. [19,20] to solve standard saddle point problem where A is symmetric positive definite.
The induced GSS preconditioners for symmetric and nonsymmetric saddle point matrices have been studied in [17,19,20].
Numerical results in [17–20] show that the shift-splitting iteration methods and the induced preconditioners are effective
and robust.

In this paper, we shall apply the GSS iteration method to solve the singular nonsymmetric saddle point problem (1.1).
The semi-convergent properties of the GSS iteration method are studied in detail. The remainder of the paper is organized
as follows. In Section 2, the semi-convergence concepts and a useful lemma are given. In Section 3, the semi-convergence
of the GSS iteration method is studied and the spectral properties of the induced GSS preconditioned saddle point matrix
are obtained correspondingly. In Section 4, numerical experiments are performed to show the feasibility and effectiveness
of the GSS iteration method and the GSS preconditioned Krylov subspace methods for solving the singular nonsymmetric
saddle point problem.

2. Basic concept and lemma

Throughout this paper, AT , σ(A), ρ(A), null(A), rank(A) and index(A) denote the transpose, the spectral set, the spectral
radius, the null space, the rank and the index of the matrix A, respectively. Let

M =
1
2


αI + A BT

−B βI


, N =

1
2


αI − A −BT

B βI


,

then the splitting (1.3) becomes

A = M − N

and the iteration scheme (1.2) can be rewritten as
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where
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is the iterationmatrix of the GSS iterationmethod and c = M−1

f
g


. Anymatrix splitting not only can automatically lead to

a splitting iteration method, but also can naturally induce a splitting preconditioner for the Krylov subspace methods. The
splitting preconditioner corresponds to the generalized shift-splitting iteration (1.2) or (2.1) is the matrix M, which we call
the generalized shift-splitting (GSS) preconditioner for the singular nonsymmetric saddle point matrix A.

To implement the GSS iteration method or apply the GSS preconditioner to a Krylov subspace method efficiently, we
need to solve a system of linear equations with the coefficient matrix M at each iteration step. Note that the Algorithm 2.1
presented in [17] is also suitable to implement the GSS iteration method or the GSS preconditioner when it is used to solve
the singular saddle point problem (1.1). According to [17, Algorithm 2.1], a system of linear equation with the coefficient
matrix αI + A +

1
β
BTB is needed to solve at each iteration step.

When A is nonsingular, for any initial vector [xT0, yT0]
T the iteration scheme (2.1) converges to the exact solution of (1.1)

if and only if ρ(Γ ) < 1. But for the singular matrix A, we have 1 ∈ σ(Γ ) and ρ(Γ ) ≥ 1, so that one can require only the
semi-convergence of the iteration scheme (2.1), see [21,22].
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