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Abstract

The steady flow of an Oldroyd 8-constant magnetohydrodynamic (MHD) fluid is considered for a cylindrical geometry when
the no-slip condition between the cylinders and the fluid is no longer valid. The inclusion of the partial slip at boundaries modifies
the governing boundary conditions, changing from a linear to a non-linear situation. The non-linear differential equation along with
non-linear boundary conditions governing the flow has been solved numerically using a finite-difference scheme in combination
with an iterative technique. The solution for the no-slip condition is a special case of the presented analysis. A critical assessment
is made for the cases of partial slip and no-slip conditions.
c© 2007 Elsevier Ltd. All rights reserved.

Keywords: Partial slip; Rheological parameters; Oldroyd 8-constant fluid

1. Introduction

We recall that fluids in which the shear stress is a multiple of the shear strain are called Newtonian fluids. The
proportionality coefficient is the viscosity. Other fluids are known as non-Newtonian fluids. Examples of Newtonian
fluids are: water, alcohol, benzene, kerosene and glycerine. Examples of non-Newtonian fluids are: blood plasma,
chocolate, tomato sauce, mustard, mayonnaise, toothpaste, asphalt, some greases and sewage.

The governing equation that describes the flow of a Newtonian fluid is the Navier–Stokes equation. During the past
several years, generalizations of the Navier–Stokes model to highly non-linear constitutive laws have been proposed
and studied because of their interest in applications. There is not a single governing equation which exhibits all
the properties of non-Newtonian fluids and these fluids cannot be described simply as Newtonian fluids. Moreover,
there are very few cases in which the exact analytic solution of Navier–Stokes equations can be obtained. These are
even rare if the constitutive equations for the non-Newtonian fluids are considered. One of the popular models for
non-Newtonian fluids is the model that is called the Oldroyd 8-constant fluid. It is reasonable to use the Oldroyd
8-constant fluid model to see the rheological effects even for unidirectional and steady flow. It is pertinent to mention
here that unidirectional flows of an Oldroyd 3-constant fluid (Rajagopal and Bhatnagar [1], Hayat et al. [2] and
Fetecau and Fetecau [3–5], Tan and Masuoka [6] and Chen et al. [7]) take into account the rheological effects in an
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unsteady situation only and lack the features of viscoelasticity for the steady state situation. Baris et al. [8] considered
an Oldroyd 8-constant model to discuss the steady flow in a convergent channel. In continuation, Hayat et al. [9]
discussed the Couette, Poiseuille and generalized Couette flows of an Oldroyd 8-constant magnetohydrodynamic
fluid.

In all the mentioned studies, the effect of the slip condition is not considered. Navier [10] proposed a slip boundary
condition when the slip velocity depends on the shear stress. He developed slip boundary conditions based on
molecular calculations. There is much rigorous work [11–20] concerning the flow of a Navier–Stokes-slip, threshold-
slip, etc. Since the equations for non-Newtonian fluids are of higher order than the Navier–Stokes equations, additional
boundary conditions are necessary in order to obtain the unique solution. The adherence boundary conditions are
insufficient to determine a unique solution. Rajagopal and Gupta [21] and Rajagopal and Kaloni [22] gave examples
of non-uniqueness in domains with porous boundaries. This implies that additional boundary conditions are necessary
to ensure the well-posedness, but it remains an open question what boundary conditions should be imposed. Moreover,
non-Newtonian fluids such as polymer melts often exhibit wall slip. The fluids exhibiting boundary slip have important
technological applications. For example, the polishing of artificial heart valves and internal cavities in a variety of
manufactured parts is achieved by imbedding such fluids with abrasives [23]. Several attempts have been made to
explain slip phenomena [24–27]. Examples of well-posedness results for the Navier–Stokes equations with Navier
slip, and more references, are given in [28–31]. Rao and Rajagopal [32] also examined the effect of the slip boundary
condition on the flow of fluids in a channel. Roux [33] studied in detail the existence and uniqueness of the flow of
second grade fluids with slip boundary conditions. Non-Newtonian flows with wall slip have been studied numerically
in Refs. [34–42]. The effect of the slip condition at the wall for Couette flow for steady and unsteady state conditions
has been studied respectively by Jha [43] and Marques et al. [44], and for Stokes and Couette flows by Khaled and
Vafai [45].

The object of the present analysis is to examine the partial slip effects on an MHD Oldroyd 8-constant fluid between
coaxial cylinders. The conducting fluid is permeated by an imposed uniform magnetic field when the no-slip condition
at the boundaries is invalid. The inclusion of the partial slip at boundaries modifies the governing boundary conditions,
changing from a linear to a non-linear situation. The highly non-linear problem has been solved numerically, and the
results have been discussed in detail. The considered Hartman flow of an electrically conducting fluid in the presence
of a transverse magnetic field has applications in many devices such as MHD power generators, MHD pumps, and
accelerators; in processes such as aerodynamics heating, electrostatic precipitation, polymer technology; and in the
purification of molten metals from nonmetallic inclusions and fluid-droplet sprays.

2. Governing equations

Consider the flow of an incompressible magnetohydrodynamic (MHD) fluid. The magnetic field is applied
transversely to the flow. The following set of pertinent field equations governing the unsteady motion of the conducting
Oldroyd 8-constant fluid is given by
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A1 = L + LT, L = grad V. (7)
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