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Abstract

By making use of some techniques based upon certain inverse pairs of symbolic operators, the authors investigate several
decomposition formulas associated with Lauricella’s hypergeometric functions F(r)

B , F(r)
C , and F(r)

D in r variables. In the three-
variable case when r = 3, some of these operational representations are constructed and applied in order to derive the corresponding
decomposition formulas. With the help of these inverse pairs of symbolic operators, a total of 15 decomposition formulas are found,
which are expressed as products of hypergeometric functions of the Gauss and Appell types.
c© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction and definitions

Multiple hypergeometric functions (that is, hypergeometric functions in several variables) occur naturally in a wide
variety of problems (see, for details, [1]). In particular, the Lauricella functions F (r)

A , . . . , F (r)
D in r (real or complex)

variables, defined by ([2] and [1, p. 33])

F (r)
A (α, β1, . . . , βr ; γ1, . . . , γr ; x1, . . . , xr )

:=

∞∑
m1,...,mr =0

(α)m1+···+mr (β1)m1 · · · (βr )mr

(γ1)m1 · · · (γr )mr

xm1
1

m1!
· · ·

xmr
r

mr !
(|x1| + · · · + |xr | < 1) , (1.1)

F (r)
B (α1, . . . , αr , β1, . . . , βr ; γ ; x1, . . . , xr )

:=

∞∑
m1,...,mr =0

(α1)m1 · · · (αr )mr (β1)m1 · · · (βr )mr

(γ )m1+···+mr

xm1
1

m1!
· · ·

xmr
r

mr !
(max {|x1|, . . . , |xr |} < 1) , (1.2)
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F (r)
C (α, β; γ1, . . . , γr ; x1, . . . , xr )

:=

∞∑
m1,...,mr =0

(α)m1+···+mr (β)m1+···+mr

(γ1)m1
· · · (γr )mr

xm1
1

m1!
· · ·

xmr
r

mr !

(√
|x1| + · · · +

√
|xr | < 1

)
, (1.3)

and

F (r)
D (α, β1, . . . , βr ; γ ; x1, . . . , xr ) :=

∞∑
m1,...,mr =0

(α)m1+···+mr (β1)m1
· · · (βr )mr

(γ )m1+···+mr

xm1
1

m1!
· · ·

xmr
r

mr !

(max {|x1|, . . . , |xr |} < 1) , (1.4)

together with their special cases when r = 2 (namely, the Appell functions F2, F3, F4, and F1, respectively) arise
frequently in various physical and quantum chemical applications ([1]; see also the recent works [3,4] and the
references cited therein).

For various multivariable hypergeometric functions including (for example) the Lauricella multivariable function
F (r)

A defined by (1.1), Hasanov and Srivastava [5] presented a number of decomposition formulas in terms of
such simpler hypergeometric functions as the Gauss and Appell functions. The main object of this sequel to the
work of Hasanov and Srivastava [5] is to show how some rather elementary techniques based upon certain inverse
pairs of symbolic operators would lead us easily to several decomposition formulas associated with Lauricella’s
hypergeometric function F (r)

B , F (r)
C , and F (r)

D in r variables (r = 2, 3, 4, . . .) and with other multiple hypergeometric
functions.

Over six decades ago, Burchnall and Chaundy [6,7] (and Chaundy [8]) systematically presented a number of
expansion and decomposition formulas for double hypergeometric functions in series of simpler hypergeometric
functions. Their method is based upon the following inverse pairs of symbolic operators:

∇xy (h) :=
Γ (h)Γ (δ1 + δ2 + h)

Γ (δ1 + h)Γ (δ2 + h)
=

∞∑
k=0

(−δ1)k (−δ2)k

(h)k k!
(1.5)

and

∆xy (h) :=
Γ (δ1 + h)Γ (δ2 + h)

Γ (h)Γ (δ1 + δ2 + h)
=

∞∑
k=0

(−δ1)k (−δ2)k

(1 − h − δ1 − δ2)k k!

=

∞∑
k=0

(−1)k (h)2k (−δ1)k (−δ2)k

(h + k − 1)k (δ1 + h)k (δ2 + h)k k!

(
δ1 := x

∂

∂x
; δ2 := y

∂

∂y

)
. (1.6)

We now introduce here the following multivariable analogues of the Burchnall–Chaundy symbolic operators ∇xy (h)

and ∆xy (h) defined by (1.5) and (1.6), respectively (cf. [9, p. 240]; see also [10, p. 113] for the case when r = 3):

∇̃x1;x2···xr (h) :=
Γ (h)Γ (δ1 + · · · + δr + h)

Γ (δ1 + h)Γ (δ2 + · · · + δr + h)

=

∞∑
k2,...,kr =0

(−δ1)k2+···+kr (−δ2)k2 · · · (−δr )kr

(h)k2+···+kr k2! · · · kr !
(1.7)

and

∆̃x1;x2···xr (h) :=
Γ (δ1 + h)Γ (δ2 + · · · + δr + h)

Γ (h)Γ (δ1 + · · · + δr + h)

=

∞∑
k2,...,kr =0

(−δ1)k2+···+kr (−δ2)k2 · · · (−δr )kr

(1 − h − δ1 − · · · − δr )k2+···+kr k2! · · · kr !
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