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Abstract

By making use of some techniques based upon certain inverse pairs of symbolic operators, the authors investigate several
decomposition formulas associated with Lauricella’s hypergeometric functions F g) F g), and F g ) in r variables. In the three-
variable case when r = 3, some of these operational representations are constructed and applied in order to derive the corresponding
decomposition formulas. With the help of these inverse pairs of symbolic operators, a total of 15 decomposition formulas are found,

which are expressed as products of hypergeometric functions of the Gauss and Appell types.
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1. Introduction and definitions

Multiple hypergeometric functions (that is, hypergeometric functions in several variables) occur naturally in a wide

variety of problems (see, for details, [1]). In particular, the Lauricella functions F/E\r), ..., F g )in r (real or complex)
variables, defined by ([2] and [1, p. 33])
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together with their special cases when » = 2 (namely, the Appell functions F», F3, Fy4, and F1, respectively) arise
frequently in various physical and quantum chemical applications ([1]; see also the recent works [3,4] and the
references cited therein).

For various multivariable hypergeometric functions including (for example) the Lauricella multivariable function
FX) defined by (1.1), Hasanov and Srivastava [5] presented a number of decomposition formulas in terms of
such simpler hypergeometric functions as the Gauss and Appell functions. The main object of this sequel to the
work of Hasanov and Srivastava [5] is to show how some rather elementary techniques based upon certain inverse
pairs of symbolic operators would lead us easily to several decomposition formulas associated with Lauricella’s
hypergeometric function F I(;), F, g), and F g ) in r variables (r =2,3,4,...) and with other multiple hypergeometric
functions.

Over six decades ago, Burchnall and Chaundy [6,7] (and Chaundy [8]) systematically presented a number of
expansion and decomposition formulas for double hypergeometric functions in series of simpler hypergeometric
functions. Their method is based upon the following inverse pairs of symbolic operators:
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We now introduce here the following multivariable analogues of the Burchnall-Chaundy symbolic operators Vyy, ()
and Ay, (h) defined by (1.5) and (1.6), respectively (cf. [9, p. 240]; see also [10, p. 113] for the case when r = 3):
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