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Abstract

Bubble and crystal size distributions have previously been described only by either exponential or power law functions. Within
this limited framework, it has not been possible to characterize size distributions in a fully quantitative manner. We have developed
an analytical and computational formulation with which to characterize and study crystal and bubble size distributions (BSD). This
formulation demonstrates that all distributions known to date belong to the logarithmic family of statistical distributions. Four
functions within the logarithmic family are best suited to natural bubbles and crystals (log normal, logistic, Weibull, and
exponential). This characterization is supported by the fact that the power law function widely used for crystal and bubble size
analysis is not a statistical distribution function, but rather represents an approximation of the upper regions (larger bubbles/
crystals) of the logistic distribution, whose sizes are much larger than the mode.

The coefficients for each of the four logarithmic functions can be derived by 1) best fit exceedance function of the logarithmic
distribution, and 2) best fit of the linear transformation of the distribution probability density. A close match of the coefficients
derived by the above two methods can be used as an indicator of correct function fitting (choice of initial values). Function fitting
by exceedance curves leads to the most accurate statistical results, but has certain strict limitations, including 1) a requirement to
rescale the base distribution function; 2) a higher failure rate for function fitting than that for distribution density; 3) uncertainty in
observational data error estimates; and 4) unsuitability for visual interpretation. The most productive approach to visualization and
interpretation of size distributions is through linear transformation of logarithmic distributions on the basis of probability densities.
This also makes it possible to 1) clearly discern bimodal distributions; 2) assess the range of observed objects relative to the full
range of the indicated distribution; 3) determine number densities for each mode directly; and 4) integrate to obtain total volume
fraction for comparison with available observations. The latter could, in some cases, provide more accurate results than many
measurement methods.

Unambiguous definition of Bubble Number Density (BND) must be based on the number of bubbles per melt volume
(not number of bubbles per bulk volume), so that like is done with crystals, it can be directly used as an indicator of basic
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vesiculation processes such that: a) nucleation leads to increase of BND, b) diffusive or decompressive bubble growth keeps BND

constant, and c) coalescence decreases BND.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Bubble and crystal size distributions have been
studied for many years (Sahagian, 1985; Marsh, 1988;
Toramaru, 1989; Bisperink and Ronteltap, 1992), as
they reveal processes that are not directly observable,
such as flow in magma chambers and conduits,
nucleation events, and the history of parcels of magma
throughout the eruption process and in lava flows at the
surface (Sahagian et al., 1989; Cashman et al., 1992;
Proussevitch et al., 1993; Cashman et al., 1994;
Vergniolle, 1996; Marsh, 1998). Previous studies of
bubble and crystal size distributions have found that
many can be characterized by exponential (Marsh,
1988) or power law (Gaonac’h et al., 1996a) functions.
However, these are special cases of more general
distributions. The data upon which these studies were
based, as well as our own new data from vesicular lavas
(Proussevitch et al., 2007-this issue; Sahagian et al.,
2002) show that they all fall in the family of logarithmic
distributions. In this paper, we develop a more
universally applicable formulation and present a meth-
odology for treating all such size distributions.

1.1. Background

Our present generalized analysis is built upon the
shoulders of seminal studies that have been conducted in
the past. Pioneering work that explored the physics of
crystal nucleation and growth dynamics to derive an
analytical formulation for crystal size distribution was
conducted by Marsh in the late 1980’s (Marsh, 1988).
This work predicted an exponential distribution for
single episode crystal nucleation combined with crystal
growth. Coefficients for the distribution functions were
directly linked to growth rates. This “classic” formula-
tion has been subsequently applied to numerous studies
of bubble size distributions (Sarda and Graham, 1990;
Cashman and Mangan, 1994; Cashman et al., 1994;
Blower et al., 2003).

In another study, Toramaru developed an analytical
formulation for bubble nucleation and growth rates and
applied it to a numerical model to predict bubble size
distributions (Toramaru, 1989). He imposed eight differ-

ent initial conditions (e.g. depth, decompression rate,
initial dissolved water concentration, etc.) in the model to
determine bubble size distribution. However, this mech-
anistic approach did not lead to any statistical interpre-
tation of distribution functions (although it is evident upon
inspection that they are logarithmic distributions). The
theoretical results were subsequently applied to a number
of vesicular lavas ranging in composition from basalt to
rhyolite with the goal of reconstructing the physical
conditions and processes within the magma body that led
to the observed distributions (Toramaru, 1990).

In a later study, Cashman applied the formulation of
Marsh (Marsh, 1988) in an attempt to characterize the
bubble size distributions of Kilauean basalts (Cashman
and Mangan, 1994). It was not possible, however, to
characterize the full distribution because only large
bubbles were available for analysis. It was not possible
to include the smaller part of the distribution because the
methodology of counting bubbles from photographs of
their cross-sections could not resolve the small bubbles.
As a result, the individual bubbles were larger than the
mode of the actual distribution.

A very thorough analysis of power law function was
subsequently conducted by Gaonac’h (Gaonac’h et al.,
1996a,b; Lovejoy et al., 2004; Gaonac’h et al., 2005).
This function can be effectively used to characterize the
upper part of the bubble size spectrum (when smaller
bubbles are neglected). While this is adequate for it
application to a limited part of the distribution, the power
law formulation is actually a special case of a log logistic
distribution used by statisticians for other applications.
We explore log logistic distributions and their applica-
tion to bubble size distributions in Section 7, below.

More recently, Blower et al. explored evolution of
exponential and power law functions to describe the
bubble distributions of observed samples (Blower et al.,
2001, 2003). They formulated a model for single and
multiple nucleation events and subsequent bubble growth
and found that the distribution resulting from multiple
nucleation events that are common for silicic systems
could be characterized by variations in the power
function. This is in contrast to the interpretations of
Gaonac’h who attributed the distribution to coalescence
(Gaonac’h etal., 1996b). In basaltic melts where vesiculation
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