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method. We establish optimal H! error estimates with suitable assumptions on the penalty
parameter ¢ as a function of the elements size h. Our focus is on establishing these results
with least restrictive assumptions possible on this dependency.
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1. Introduction

Let £2 be an open bounded domain of R%(d = 2, 3) with boundary 352 and let f € [*(£2). We consider the elliptic
equation

—Au+u=f, ing, (m
with the homogeneous Dirichlet boundary condition

u=0, onas2. (2)
If 9£2 is Lipschitz continuous (¢ 1) then this problem has a unique weak solution u € H(} (£2) satisfying

A(u,v) =F(v), YuveH(R), (3)

where the bilinear form A and the linear form F are defined by
A(u,v) = / Vu~Vvdx+/ u v dx,
2 2
F(v) :== / fodx.
2
Due to the symmetry of A, u is also the minimizer of the quadratic functional J(v) := %A(v, v) — F(v) over Hg (£2).
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Instead of working in the constrained set H(} (£2) induced by the homogeneous Dirichlet boundary condition, we use the
penalty method to relax this constraint and to work on the entire space H!(£2). A common penalized formulation is then:
Given e > 0, find u, € H'(£2), such that

A(ug,v) = F(v), YveH(2), (4)

where

1
A (ug, v) = A(ug, v) + f/ Ug v ds.
€ Jag
The unique solution u, is also the minimizer of the perturbed quadratic functional J,(v) = J(v) + ﬁ fag |v|®ds and Eq. (4)
is a weak (or variational) form of the Robin type boundary value problem

—Au, +u, =f, ing£, (5)
1

Vu, -n+ -u, =0, ondsf. (6)
€

The penalized solution u, is expected to converge to u when the penalty parameter € goes to 0. If 3 £2 is sufficiently smooth,
for instance ¢!, then a general result of Maury [1] (see Theorem 1 below) implies that |ju — u, g2y = O(e) ifuis regular

enough, more precisely in H2(£2). If 352 is only Lipschitz continuous (¢%!), like with a polygonal domain, then the general
result of [1] does not apply, unless the normal derivative du/dn is assumed to lie in H/2(3£2), a condition that does not
hold generally if u € H?(£2) due to the low regularity of 3£2. To the best of our knowledge, assuming only u € H2(£2), the
best theoretical convergence result is [lu — ue ||y o) = ©(£'/?). This can be proved as in [2] for the (elliptic) Lamé system
of equations with ideal contact boundary conditions which include a Dirichlet-type boundary condition.

Here we consider penalty-finite element approximations of the original problem (3) which are finite element
approximations of the penalized problem (4). Let h denote the discretization parameter, that is the size of the elements
constituting the regular mesh of 2 or a polyhedral approximation £2; of £2. We consider finite element approximation
spaces V, made of continuous piecewise polynomials of degree k over £2 or §2;, respectively. Then, choosing the penalty
parameter in the form ¢ = h* with a suitable value of A > 0, we expect the convergence to be optimal with respect to the
H'(2)-norm: ||u — g pl|y1(g) = O(H).

Obtaining such optimal convergence estimates is not so easy and is not even proven in all cases. Take for instance the case
where £2 is polyhedral (or polygonal), in which case it can be exactly partitioned into a union of (for instance) tetrahedral
elements and the resulting approximation is conforming (V;, C H'(£2)). A standard estimate (see Exercise 3.2.2 in Ciarlet 3]
or Proposition 2.10 in Maury [1]) is of the form

+J§>,

k
NG
if u € H*'(£2). Unfortunately, this estimate cannot provide an optimal convergence rate because of the presence of a

negative power of ¢ in the right hand side which is due to the continuity constant of the bilinear form A, which is not
uniform with respect to ¢ as ¢ — +00. However, another simple argument given in [ 1], Proposition 2.9, leads to

lu—tenllyre =C <

k
lu — e nllgro) < C(h" 4 /llu — Uellgie))-

if u € H**'(£2), which thus gives the bound C(h* 4 /%) according to what we mentioned previously in the case of a
polyhedral domain £2, if we do not assume the extra regularity du/dn € H'/?(9£2). This estimate cannot be seen as optimal
in terms of &, since in the limit case h = 0 it only gives an @ (¢!/4) convergence. Nevertheless, it shows that an optimal
convergence rate @ (h¥) is achieved if A > 4 k. To the best of our knowledge, the best estimates were obtained by Barrett
and Elliott [4] who proved the convergence rate to be optimal with A > k + 1/2 and u € H*t'(£2). Let us also add that
the regugts in [4] give an optimal © (h**1) rate in the L?(£2)-norm, but with the stronger assumption that A > k + 1 and
u € H¥2 ().

In the present work we consider a smoother (curved) boundary 342, at least ¥'-!. Two classes of tetrahedral meshes
were considered in the literature on the penalty method. For the first class, £2 C Dy, the union of tetrahedral elements, and
the integrations involved in the variational formulation are performed exactly over §2 and 9£2. This was first considered by
Babuska [5] and his results were later improved by Barrett and Elliott [4] who obtained optimal H' convergence rates for
k = 1and k = 2 with, respectively, 1 < A < 2 and A = 2, under the assumption that u € H**2(£2). For the second class of
meshes, an approximation §2;, of £2 is meshed and the integrations involved in the (approximate) variational formulation
are performed over §2, and 9£2;,. Barrett and Elliot only considered linear elements (k = 1) and showed an optimal H'
convergence rate with the only choice A = 2, under the assumption that u € H*(£2).

In this paper we consider the latter case, where integrations are performed over §2j, a case of variational crime (V, £
H'(£2)). Our goal is to obtain optimal H' convergence rates for every choice of k and with less restrictions on A, in particular
with no upper bound for A. Circumventing such a restriction can assure the practitioner that, for a given mesh (that is for a
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