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a b s t r a c t

We consider the finite element approximation of an elliptic problem with homogeneous
Dirichlet boundary conditions on a curved boundary and imposed using the penalty
method.We establish optimalH1 error estimateswith suitable assumptions on the penalty
parameter ε as a function of the elements size h. Our focus is on establishing these results
with least restrictive assumptions possible on this dependency.
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1. Introduction

Let Ω be an open bounded domain of Rd(d = 2, 3) with boundary ∂Ω and let f ∈ L2(Ω). We consider the elliptic
equation

−1u + u = f , in Ω, (1)

with the homogeneous Dirichlet boundary condition

u = 0, on ∂Ω. (2)

If ∂Ω is Lipschitz continuous (C 0,1) then this problem has a unique weak solution u ∈ H1
0 (Ω) satisfying

A(u, v) = F(v), ∀ v ∈ H1
0 (Ω), (3)

where the bilinear form A and the linear form F are defined by

A(u, v) :=


Ω

∇u · ∇v dx +


Ω

u v dx,

F(v) :=


Ω

f v dx.

Due to the symmetry of A, u is also the minimizer of the quadratic functional J(v) :=
1
2A(v, v) − F(v) over H1

0 (Ω).
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Instead of working in the constrained set H1
0 (Ω) induced by the homogeneous Dirichlet boundary condition, we use the

penalty method to relax this constraint and to work on the entire space H1(Ω). A common penalized formulation is then:
Given ε > 0, find uε ∈ H1(Ω), such that

Aε(uε, v) = F(v), ∀ v ∈ H1(Ω), (4)

where

Aε(uε, v) := A(uε, v) +
1
ε


∂Ω

uε v ds.

The unique solution uε is also the minimizer of the perturbed quadratic functional Jε(v) := J(v) +
1
2ε


∂Ω

|v|
2ds and Eq. (4)

is a weak (or variational) form of the Robin type boundary value problem

−1uε + uε = f , in Ω, (5)

∇uε · n +
1
ε
uε = 0, on ∂Ω. (6)

The penalized solution uε is expected to converge to uwhen the penalty parameter ε goes to 0. If ∂Ω is sufficiently smooth,
for instance C 1,1, then a general result of Maury [1] (see Theorem 1 below) implies that ∥u− uε∥H1(Ω) = O(ε) if u is regular
enough, more precisely in H2(Ω). If ∂Ω is only Lipschitz continuous (C 0,1), like with a polygonal domain, then the general
result of [1] does not apply, unless the normal derivative ∂u/∂n is assumed to lie in H1/2(∂Ω), a condition that does not
hold generally if u ∈ H2(Ω) due to the low regularity of ∂Ω . To the best of our knowledge, assuming only u ∈ H2(Ω), the
best theoretical convergence result is ∥u − uε∥H1(Ω) = O(ε1/2). This can be proved as in [2] for the (elliptic) Lamé system
of equations with ideal contact boundary conditions which include a Dirichlet-type boundary condition.

Here we consider penalty-finite element approximations of the original problem (3) which are finite element
approximations of the penalized problem (4). Let h denote the discretization parameter, that is the size of the elements
constituting the regular mesh of Ω or a polyhedral approximation Ωh of Ω . We consider finite element approximation
spaces Vh made of continuous piecewise polynomials of degree k over Ω or Ωh respectively. Then, choosing the penalty
parameter in the form ε = hλ with a suitable value of λ > 0, we expect the convergence to be optimal with respect to the
H1(Ω)-norm: ∥u − uε,h∥H1(Ω) = O(hk).

Obtaining such optimal convergence estimates is not so easy and is not even proven in all cases. Take for instance the case
where Ω is polyhedral (or polygonal), in which case it can be exactly partitioned into a union of (for instance) tetrahedral
elements and the resulting approximation is conforming (Vh ⊂ H1(Ω)). A standard estimate (see Exercise 3.2.2 in Ciarlet [3]
or Proposition 2.10 in Maury [1]) is of the form

∥u − uε,h∥H1(Ω) ≤ C


hk

√
ε

+
√

ε


,

if u ∈ Hk+1(Ω). Unfortunately, this estimate cannot provide an optimal convergence rate because of the presence of a
negative power of ε in the right hand side which is due to the continuity constant of the bilinear form Aε which is not
uniform with respect to ε as ε → +∞. However, another simple argument given in [1], Proposition 2.9, leads to

∥u − uε,h∥H1(Ω) ≤ C(hk
+


∥u − uε∥H1(Ω)),

if u ∈ Hk+1(Ω), which thus gives the bound C(hk
+ ε1/4) according to what we mentioned previously in the case of a

polyhedral domain Ω , if we do not assume the extra regularity ∂u/∂n ∈ H1/2(∂Ω). This estimate cannot be seen as optimal
in terms of ε, since in the limit case h = 0 it only gives an O(ε1/4) convergence. Nevertheless, it shows that an optimal
convergence rate O(hk) is achieved if λ ≥ 4 k. To the best of our knowledge, the best estimates were obtained by Barrett
and Elliott [4] who proved the convergence rate to be optimal with λ ≥ k + 1/2 and u ∈ Hk+1(Ω). Let us also add that
the results in [4] give an optimal O(hk+1) rate in the L2(Ω)-norm, but with the stronger assumption that λ ≥ k + 1 and
u ∈ Hk+2(Ω).

In the present work we consider a smoother (curved) boundary ∂Ω , at least C 1,1. Two classes of tetrahedral meshes
were considered in the literature on the penalty method. For the first class, Ω ⊂ Dh, the union of tetrahedral elements, and
the integrations involved in the variational formulation are performed exactly over Ω and ∂Ω . This was first considered by
Babuska [5] and his results were later improved by Barrett and Elliott [4] who obtained optimal H1 convergence rates for
k = 1 and k = 2 with, respectively, 1 ≤ λ ≤ 2 and λ = 2, under the assumption that u ∈ Hk+2(Ω). For the second class of
meshes, an approximation Ωh of Ω is meshed and the integrations involved in the (approximate) variational formulation
are performed over Ωh and ∂Ωh. Barrett and Elliot only considered linear elements (k = 1) and showed an optimal H1

convergence rate with the only choice λ = 2, under the assumption that u ∈ H4(Ω).
In this paper we consider the latter case, where integrations are performed over Ωh, a case of variational crime (Vh ⊈

H1(Ω)). Our goal is to obtain optimal H1 convergence rates for every choice of k and with less restrictions on λ, in particular
with no upper bound for λ. Circumventing such a restriction can assure the practitioner that, for a given mesh (that is for a
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