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We consider the current state of our understanding of the rheology of two-phase magmas, that is suspensions
of either bubbles or crystals in a viscous silicate melt. The discussion is restricted to strain-rates at which the
suspending melt can be considered Newtonian. We start by considering the range of textures found in
magmas and the bubble deformation and particle motions caused by shearing. We then review proposed
models for suspensions, focussing on those functions of the form ηr = f(ϕ) or τ ¼ f _γð Þ that have been
most widely used to describe magmatic systems (ηr is the relative apparent viscosity of the suspension, ϕ
is the volume fraction of the suspended phase, τ is the driving stress, and _γ is the strain-rate). Both theoret-
ical and empirical methods are presented and then compared against the available analogue (i.e. non-
magmatic) and magmatic data. The paper contains new data and significant re-analysis of previously pub-
lished data. We present a new semi-empirical constitutive model for bubble-bearing magmas that is valid
for steady and unsteady flow and large strains and strain-rates. This equation utilises a new parameter, the
capillarity Cx, that encapsulates the combined effect of shearing and unsteadiness on bubble suspensions.
We also present a new scheme for dealing with polydispersivity of bubble suspensions. New data on the rhe-
ology of particle suspensions undergoing forced-oscillations are presented. These data show that the Cox–
Merz rule only holds for dilute particle suspensions ϕ ≲ 0.25. A re-analysis of all available experimental
data that relate rheology to particle aspect ratio provides distinct curves of maximum packing as a function
of aspect ratio for smooth and rough particles with magmatic data lying on the curve appropriate for
rough particles. We analyse several rheological datasets of crystal-bearing basaltic magmas and find that
they are in good agreement with the constitutive equations derived from analogue data. By contrast, the
same equations do not agree well with data for high-viscosity, haplogranitic melts. This may be an effect of
fracturing or viscous dissipation within these samples. The paper concludes with a practical ‘rheological rec-
ipes’ section giving a step-by-step method for calculating a constitutive equation for a two-phase magmatic
suspension and assessing its likely accuracy.
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1. Introduction

It is difficult to overstate the importance of an accurate, quantitative
description of the rheology of magmas for volcanological research. This
knowledge is fundamental to determining the rate at which a magma
will flow, the internal forces and structures that will be generated during
the flow, and ultimately the distance attained before magma finally
comes to rest (e.g. Lautze and Houghton, 2005; Llewellin and Manga,
2005; Melnik and Sparks, 2005; Rowland et al., 2005; Carrichi et al.,
2007; Gonnermann and Manga, 2007; Hale and Wadge, 2008; de
Maissoneuve and Bachmann, 2009; Massol and Jaupart, 2009;
Applegarth et al., 2010). Flow rates and internal forces or pressures
are intimately linked to degassing and crystal growth and so
magma rheology can also be a key determinant of magma geochem-
istry (e.g. Cashman and Blundy, 2000; Hale et al., 2007). Magma rhe-
ology is therefore a controlling input to all models of magmatic flow
and hence our ability to predict volcanic hazards or interpret the vol-
canic record.

A quantitative description of the rheology of any fluid involves
establishing how the deforming stress, the shear stress τ, is related to
the rate of deformation, the shear strain-rate _γ . In general, a constitutive
equation is given by τij ¼ f _γ ij

� �
where τij and _γ ij are tensors that give a

three-dimensional description of stress and strain-rate, respectively.
For many flows of practical interest, including most flows which are
used to measure rheology, the rectilinear nature of the flow and the
symmetry of the tensors allows the equation to be reduced to the
one-dimensional form τ ¼ f _γð Þ. Conventionally, stress is plotted against
strain-rate to produce a flow curve (Fig. 1). The simplest constitutive
equation is τ ¼ μ _γ which produces a flow curve that is a straight line
through the origin with a slope of μ. Fluids with such a flow curve are
called Newtonian and μ is the viscosity which is a parameter of the fluid
that is independent of strain-rate, although it is usually strongly depen-
dent on other variables such as temperature. (For a tensorial treatment
of the main equations used in this review, refer to the Supplementary
Information.)

Many fluids exhibit non-Newtonian rheology. A few examples of the
non-linear flow curves associated with some typical non-Newtonian
behaviours are also shown in Fig. 1. It is not possible to define a single,
strain-rate-independent viscosity for such non-linear flow curves. How-
ever it is common practice to describe the rheology of non-Newtonian
materials in terms of an apparent viscosity η which is simply the ratio of
stress to strain-rate (η ¼ τ= _γ) and varies with strain-rate. Care must be
taken in interpreting apparent viscosity for the following reasons.
Graphically, η is the slope of the straight line to the point on the flow
curve _γ ; τð Þ. This slope gives the viscosity that a Newtonian fluid
would have to have for its flow curve to go through that point. But the
straight line to a point on a non-linear flow curve bears little relation-
ship to the flow curve itself. Furthermore, whilst the ratio of stress

to strain-rate η ¼ τ= _γ for a non-Newtonian fluid will of course have
dimensions of viscosity, the constitutive equation τ ¼ f _γð Þ for the
non-Newtonian fluid need contain no parameter with dimensions of
viscosity. Nevertheless, it is intuitive to think in terms of viscosity and
so we will here also use the apparent viscosity, where this produces
useful insights.

The source of the non-Newtonian rheology seen in many single
phase fluids is associated with the arrangement of the molecules and
the nature of the bonds between them; for example, polymers are usu-
ally non-Newtonian, as is the process of creep, which is the very slow
flow of crystalline solids such as ice or rock. In magma, however, non-
Newtonian rheology typically arises from the presence of a dispersed
phase of either crystals or bubbles. In fact magma is rarely monophase
and is usually a suspension of solid particles (phenocrysts, microlites,
lithics) and gaseous bubbles in a viscous carrying liquid (a silicate
melt). Such multiphase suspensions are commonplace in nature and
in industry and display all manner of non-Newtonian behaviour. As
we shall see, suspended particles can cause the development of a
yield stress. The surface tension of bubbles provides an internal restor-
ing force which introduces a component of elasticity, so bubble

Fig. 1. Typical flow curves. (a) Newtonian (e.g. water, silicone oil, golden syrup, silicate
melts), μ ¼ τ= _γ . (b) Shear-thinning or pseudoplastic (e.g. ice, blood, paint). (c) Shear-
thickening or dilatant (e.g. wet sand, wet starch). (d) Bingham (e.g. toothpaste, margarine)
τ ¼ τ0 þ η⋆ _γ . For these fluids, a minimum stress, the yield stress τ0, has to be overcome
for flow to start. Note that whilst η⋆ does have dimensions of viscosity and is a constant, it
is not the same as the apparent viscosity η, which varies with strain-rate, despite the linear
relationship between stress and strain-rate. (e) Herschel–Bulkley, an example of a plastic
fluid, τ ¼ τ0 þ K _γn , shown here with n b 1, i.e. shear-thinning. The apparent viscosity η,
which is the slope of the (dashed) line to a specific example point _γ ; τð Þ, is also shown.
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