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Abstract

A new model for the generation of crystal size distributions (CSDs) in igneous rocks is presented here. Synthetic or numerically
simulated CSDs are generated with a growth rate that is proportional to the amount of precipitating solids and inversely related to
the second moment of the CSD (total surface area) and with the log(nucleation rate, I) vs. log(cooling rate) relationship of Cashman
[Cashman, K.V., (1993). Relationship between plagioclase crystallization and cooling rate in basaltic melts. Contrib. Mineral.
Petrol., v. 113, pp. 126–142.] for crystal nucleation. The resultant CSDs resemble those observed in natural rocks. In the new
model, growth rate is constrained by a mass balance and crystal population systematics; it is not calculated as a function of cooling
rate or undercooling. The development of the numerical model was motivated in part by the failure of analytical modeling of crystal
populations based solely on cooling rate to generate CSDs similar to those observed naturally. The new model is used to create a
suite of CSDs from various positions within a sill; cooling and solidification of the sill are calculated numerically. The model
reproduces many features observed in the CSDs of natural rocks such as linear CSDs in plots of ln(population density) vs. crystal
size, ‘D’-shaped mean crystal size profiles and decreasing CSD intercept and slope magnitude (i.e., |slope|) with distance from the
sill/wallrock contact, and the CSD intercept vs. slope relationship. The model suggests the use of inversion to more accurately
determine residence time from a natural CSD.
Published by Elsevier B.V.
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1. Introduction

Crystal size distributions (CSDs) are quantitative
representations of crystal populations in rocks (Marsh,
1988; Cashman and Marsh, 1988; Mangan, 1990;
Resmini and Marsh, 1995; Marsh, 1998) and provide
information on the kinetics of crystal nucleation and
growth in magmas and lavas. Natural CSDs are
characterized to first-order as linear or quasi-linear

spectra with negative slope on a plot of the natural
logarithm of population density vs. crystal size. Fig. 1
shows a CSD of plagioclase in a high-alumina basalt
from Atka Island, Alaska (sample AT-67 of Myers et al.,
1986, and of Resmini, 1993; Resmini and Marsh, 1993);
additional examples of CSDs can be found in, e.g., Zieg
and Marsh (2002), Zieg (2001), Marsh (1998), Cashman
and Marsh (1988), Higgins (1996), Mangan (1990), and
Resmini and Marsh (1995). Since crystal nucleation and
growth are also responses to the cooling of molten rock,
CSDs may also record the history of cooling of
magmatic systems. It is difficult, however, to extract
such information from CSDs because of a relative
paucity of modeling studies which attempt to relate
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CSDs to magmatic processes such as solidification and
which can guide our understanding of natural systems
(notable exceptions include Spohn et al., 1988; Hort and
Spohn, 1991; Marsh, 1998). Alternatively, natural CSDs
provide irrefutable criteria against which models of
crystal nucleation and growth in magmatic systems must
be checked. Here, a new model for the generation of
CSDs is presented. It was motivated in part by testing
the ability of a model of crystal nucleation and growth
kinetics based on cooling rate to produce CSDs typical
of those observed in rocks. It was also developed to
implement a more complicated crystallization mecha-
nism than one based on cooling rate alone.

Cashman (1993), following an extensive review of
the literature on crystal nucleation and growth, has
proposed that the logarithm of both the crystal growth
rate, G, and the crystal nucleation rate, I, in magmatic
systems such as sills, dikes, and lava lakes are functions
of the logarithm of the cooling rate, ∂T /∂t. Below, an
analytical expression for the CSD in a system closed to
mass transfer (e.g., a sill) is obtained as the solution to
the batch population balance equation combined with a
cooling and solidification model from Jaeger (1957) and
the cooling rate-based logarithmic kinetic expressions.
The resulting CSD does not resemble those typically
observed in rocks.

In an attempt to understand the nature of the CSDs
produced with the cooling rate-based (and other) kinetic
expressions, a new model of CSD generation was
developed. The new CSD model calculates a growth
rate that is proportional to the amount of crystallizing
solids and inversely dependent upon the evolving crystal

population, and employs the log(I) vs. log(∂T /∂t)
relationship for crystal nucleation. The model is coupled
to a model of cooling and solidification (with latent heat);
the crystal growth rate is constrained by a mass balance
and crystal population systematics. The resulting CSDs
resemble those in natural rocks. This model is discussed
in detail and is then used to create a suite of CSDs from
various positions within a sill. The model reproduces
many features observed in the CSDs of natural rocks such
as linear CSDs in ln(n) vs. L space, decreasing CSD
intercept and slope magnitude (i.e., |slope|) with distance
from the sill/wallrock contact, and the CSD intercept vs.
slope relationship.

We begin by briefly describing the analytical
calculations followed by a description of the numerical
model. Implications of the new model for petrological
analysis are then considered.

2. Analytical modeling: crystallization as a function
of cooling rate

The batch population balance equation (BPBE) is a
homogeneous, first-order, one-dimensional wave equation:
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which relates n, crystal population density (number/
length4) to time, t, crystal growth rate,G, and crystal size,
L. The BPBE lacks a term for the inflow and outflow of
mass and is thus appropriate for modeling particulate
processes such as crystal nucleation and growth in sys-
tems closed to mass transfer (Marsh, 1988; Randolph and
Larson, 1988).WhenG is a function of n, Eq. (1) is quasi-
linear. Solutions to Eq. (1) are thus of the form n=n(L,t).
Here, themethod of characteristics (see, e.g., Lamb, 1995;
Haberman, 1987) is used to analytically solve the BPBE
(Eq. (1)) posed as a quasi-linear boundary value problem
(i.e., n(L,0)=0 and n(0,t)=n°(t)). Derivation of the
boundary conditions and growth rate term are described
next.

2.1. BPBE boundary conditions and the crystal growth
rate

Cashman (1993) has proposed the following kinetic
expressions for describing the dependence of crystal
nucleation and growth rates on cooling rate, ∂T /∂t: log
(G) = log(G′) + p(log(∂T /∂t)) and log(I) = log(I′) +m
(log(∂T /∂t)). The first expression, recast as G=G′
(∂T /∂t)p, provides the growth rate term for the BPBE
and is also required for defining the boundary

Fig. 1. A CSD of plagioclase in a high-alumina basalt from Atka
Island, Alaska, from Resmini (1993).
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