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Approximately every 100,000 years the Earth experiences catastrophic caldera-forming “supereruptions” that are
considered to be one of the most hazardous natural events on Earth. Utilizing new temperature-dependent,
viscoelastic numerical models that incorporate a Mohr-Coulomb failure criterion, we find that eruptive failure
of the largest magma chambers is a function of the geometry of the overlying roof and the location of the
brittle-ductile transition. In particular, the ductile halo created around the hotmagma chamber buffers increasing
overpressures and prevents pressure relief via magmatic injection from the magma chamber. The numerical
results indicate that as chamber volume increases, the higher temperatures in the host rock and the decrease in
the roof aspect ratio cause a shift from reservoir-triggered eruption to an external roof-triggered mechanism.
Specifically, as overpressure increases within the largest magma chambers, extensive uplift in the overlying
roof promotes the development of through-going faults that may trigger eruption and caldera collapse from
above.We find that formagma chamber volumes>103 km3, and roof aspect ratios (depth/width)b0.3,moderate
magma chamber overpressures (b30 MPa) will cause extensive through-going fault development in the overly-
ing roof. This result indicates an externalmechanism, caused by fault propagation in the roof, is a likely trigger for
the largest caldera forming eruptions. The thermomechanical models also provide an estimate of the maximum
size of magma chamber growth in a pristine host material and, thus, an estimate of the maximum size of
the resultant caldera. We find a maximum reservoir volume range of 104–105 km3 for shallow crustal magma
chambers emplaced at depths to the top of the magma chamber of 3–7 km. These volumes produce maximum
caldera areas of 103–104 km2, comparable to the largest calderas observed on Earth (e.g., Toba). These
thermomechanical models offer critical new insight into the mechanics of catastrophic caldera collapse and
provide a numerical construct for predicting how eruption is triggered in the largest crustal magma chambers.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Catastrophic caldera-forming eruptions that emplace 1000s of cubic
kilometers of ignimbrites are amongst the most devastating of geologic
phenomena. The calderas left in the wake of these explosive events are
10s of kilometers in diameter (e.g., Smith and Bailey, 1968; Lipman,
1984) and the magma bodies that supply these events are thought
to be as much as an order of magnitude larger in volume (Smith
and Shaw, 1979). Growing an eruptible magma reservoir of this size
requires tens of thousands to hundreds of thousands of years ofmaterial
and thermal fluxes well in excess of average mantle to crust flows
(de Silva and Gosnold, 2007; Annen, 2009). Over that time period, re-
peated intrusions from below heat the host rock in the vicinity of the
magma reservoir and enhance its ductility (Annen and Sparks, 2002;
Jellinek and DePaolo, 2003; de Silva et al., 2006; de Silva and Gosnold,

2007; Annen et al., 2008; Karlstrom et al., 2010), allowing the reservoir
to growwithout triggeringmagma evacuation through intrusion and/or
eruption (Jellinek and DePaolo, 2003; Annen et al., 2006). Nevertheless,
since a preliminary plinian eruption is a common feature of many
catastrophic caldera-forming eruptions (e.g., Druitt and Sparks, 1984),
a common mechanism invoked for the onset of caldera collapse is the
relief of overpressure through an initial eruption from the magma
chamber (Roche et al., 2000; Roche and Druitt, 2001). The resultant
underpressurization will rapidly deflate the magma chamber and
promote reverse ring faulting through the roof, leading to caldera
collapse (Roche et al., 2000; Kennedy et al., 2004; Acocella, 2006; Geyer
et al., 2006; Scandone and Acocella, 2007; Simakin and Ghassemi,
2010). However, if the ductile region around a magma chamber inhibits
dike and sill formation (Jellinek and DePaolo, 2003), it is difficult to cite
a pre-cursor dike injection as the optimal trigger for caldera-forming
eruptions in large systems. Furthermore, analog models indicate that
precursor eruptions must drain a significant portion of themagma reser-
voir (10–60%; Geyer et al., 2006) for caldera onset. Finally, many of the
largest calderas do not record evidence of an initial plinian eruption
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that would underpressurize the magma chamber and catalyze caldera
collapse (Druitt and Sparks, 1984; Sparks et al., 1985; de Silva et al.,
2006; Chesner, 2012). Thus, critical gaps in our knowledge of the
mechanics of triggering the largest silicic eruptions remain.

Numerical models have been utilized extensively to investigate the
formation of collapse calderas at a variety of size scales (Gudmundsson,
1988; Gudmundsson, 1998; Burov and Guillou-Frottier, 1999; Guillou-
Frottier et al., 2000; Folch and Marti, 2004; Hardy, 2008; Kinvig et al.,
2009; Simakin and Ghassemi, 2010; Karlstrom et al., 2012). Some of
these efforts have focused on the elastic problem (e.g., Gudmundsson,
1998), and almost all have focused on rapidly underpressurizing the
magma chamber via a precursor eruption to trigger caldera formation
(e.g., Kinvig et al., 2009). The thermomechanical models of Burov and
Guillou-Frottier (1999) provide an examination of fault development
due to uplift in the crust above a pressurized magma chamber prior to
rapid underpressurization triggered by a central vent eruption, and are
some of the first to illustrate fault formation. However, these numerical
experiments did not explore the implications of developing weaknesses
in the roof overlying a magma chamber in triggering eruption (Burov
and Guillou-Frottier, 1999; Guillou-Frottier et al., 2000). Subsequent
investigations by Simakin and Ghassemi (2010) impose pre-existing
zones of weakness in the roof and explore the role of pre-existing faults
in the eruption behavior of a volcanic system. While these numerical
modeling studies greatly advanced our understanding of catastrophic
caldera formation, none have focused on the mechanism(s) triggering
caldera eruptions or the mechanical size limitations of building large
magmatic systems.

Although large caldera forming eruptions have a potentially
devastating impact on the local and global environment, little is known
about the maximum size and frequency of these events (Mason et al.,
2004). Of particular interest is whether there is an absolute limit to the
potential size of eruptions on Earth andhow themagmabody accumulat-
ing in the crustmay govern this size limit. The accretion of large bodies of
magma in the crust has been the topic of several previous investigations
(Annen and Sparks, 2002; Jellinek and DePaolo, 2003; de Silva et al.,
2006; de Silva and Gosnold, 2007; Annen et al., 2008; Karlstrom et al.,
2010). Of particular note are the models of magma chamber growth
developed by Jellinek and DePaolo (2003), which reveal that the ductile
shell generated around a very large magma reservoir will prevent dike
initiation and allow the reservoir to grow indefinitely without eruption.
This finding led Jellinek and DePaolo (2003) to pose two critical ques-
tions: (1) what mechanics limit the maximum size of magma chamber
growth; and (2) what ultimately triggers eruption of the largest magma
chambers? The primary field constraints available to provide limits on
the largest eruptions are the resultant collapse caldera areas and the
extrusive lava volumes. While these surface expressions provide crucial
information about the magmatic plumbing systems that feed these
eruptions, there are no detailed mechanical models which link caldera
size and erupted volume to the size of the reservoir beneath. In this
paper, we investigate both the eruption trigger in the largest systems
and the mechanics limiting their size.

To investigate the pre-collapse evolution of large silicic magma
chambers and the maximum size of magma chamber growth, we
develop a new viscoelastic model that incorporates a temperature-
dependent formulation for viscosity and a Mohr–Coulomb failure
criterion. This paper is organized as follows:first, elastic and viscoelastic
numerical modeling advancements are benchmarked against ana-
lytical solutions for a pressurized spherical magma chamber. Second,
the effects of incorporating a temperature-dependent viscosity and
temperature-dependent material parameters into the viscoelastic
rheology are investigated. Third, the numerical models are applied to
a spectrum of magma chamber geometries. The incorporation of a
Mohr–Coulomb failure criterion in the numerical model allows for
critical investigation of fault formation in the overlying roof and its
role in triggering eruption as the system evolves. Finally, we compare
our numerical results to the global database of collapse calderas.

2. Analytical solution

The analytical solution for the surface deformation in response to
a pressurized point source at depth in an elastic half space (Mogi,
1958) is widely utilized to describe the pressurization of a spherical
magma chamber at depth within the crust. In this solution, the Earth's
crust is considered to be an ideal semi-infinite elastic body and the
radius of the source, a, is assumed to be much less than the depth
to the center of the source, d. It follows that the horizontal and vertical
displacements at the surface, Ux and Uz respectively, are functions of
source location and the elastic properties of the crust:

Ux ¼
ΔPa3x
r3

3K þ 4G
2G 3K þ Gð Þ ; ð1Þ

Uz ¼
ΔPa3d
r3

3K þ 4G
2G 3K þ Gð Þ ; ð2Þ

where ΔP is the change in pressure of the sphere, r is the radial distance
to the mid-point of the source, K is the bulk modulus, and G is the shear
modulus.

While the elastic model has proven to be effective for describing
surface displacement in small reservoir systems (McTigue, 1987;
Grosfils, 2007), when a/d≪1 or the material properties are not purely
elastic, the Mogi model may not be effective (Newman et al., 2001;
Newman et al., 2006). As such, to calculate the predicted deformation
in large magmatic systems with long thermal histories it is necessary
to also consider the viscous and temperature-dependent responses of
the crust to changes in magma chamber pressurization. To this end,
we first consider the analytical solution for a linear viscoelasticmaterial,
which will be used to benchmark our numerical solutions.

A simple description of a viscoelastic material is a linear Maxwell
model in which the instantaneous elastic response of the material is
given by a spring with a stiffness, given by G, while the time-dependent
viscous response is defined by a dashpot with viscosity, η. The deforma-
tion response of a viscoelastic material is further defined in the general-
ized Maxwell model (Fig. 1), which utilizes j linear Maxwell series in
parallel with each other. The viscoelastic response is dependent on the
characteristic relaxation times given by:

τ0 ¼ η
G0μ1

ð3Þ

τ1 ¼ 3K þ G0

3K þ G0μ0
τ0 ð4Þ

τ2 ¼ τ0
μ0

ð5Þ

where μ0 and μ1 are the fractional moduli.

Fig. 1. Generalized Maxwell model.
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