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a b s t r a c t

In this paper, efficient numerical schemes are proposed for solving the fractional water
wave models that describe the propagation of surface water wave. By using the weighted
and shifted Grünwald–Letnikov (WSGL) formula to approximate the nonlocal fractional
operators, we design a series of second order accurate difference schemes for the
considered models. The existence, stability and convergence of numerical solutions of
the proposed numerical schemes are established rigorously. The analysis shows that the
proposed numerical schemes are unconditionally stable with second order accuracy for
both temporal and spatial discretizations. Several numerical results are provided to verify
the efficiency and accuracy of our theoretical analysis.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper, we consider the efficient numerical schemes for solving the nonlocal water wave model

ut + f (u)x − αutxx + Dµ
x u = νuxx, (1)

where u = u(x, t) represents the vertical displacement of the surface of the wave from its equilibrium, x is proportional
to distance in the direction of wave and t is proportional to elapsed time. Dµ

x is the linear combination of left and right
Riemann–Liouville fractional derivatives

Dµ
x u(x, t) =


κ1 aDµ

x + κ2 xD
µ

b


u(x, t), 0 < µ < 1, (2)

with aD
µ
x and xD

µ

b being left and right Riemann–Liouville fractional derivatives of order µ, respectively, defined by [1]

aDµ
x u(x, t) =

1
0(1 − µ)

∂
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 x

a
(x − s)−µu(s, t)ds, (3)

and
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µ

b u(x, t) =
−1

0(1 − µ)

∂
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x
(s − x)−µu(s, t)ds. (4)
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Here the parameters α, ν and κ1, κ2 are nonnegative constants which describe the balance, the effects of viscosity and
dispersion. And the Fourier symbol of the operator of the fractional derivative defined in (2) gives [2,3]

F (Dµ
x ) = κ1(ik)µ + κ2(−ik)µ =


cos

πµ

2


+ i(κ1 − κ2) sin

πµ

2


|k|µ, k ∈ R, i2 = −1. (5)

Equations of the form (1) appear in many models concerning the propagation of small-amplitude, nonlinear, dispersive,
dissipative wave equations, see [4,5] and references therein. The evolution Eq. (1) includes several classical equations as
special cases. For example, if f (u) = u + δ u2

2 , δ > 0, ν = 0, µ =
1
2 , the model reduces to fractional Kakutani–Matsuuchi

model [5,6]

ut + ux − αutxx + D
1
2
x u + δuux = 0. (6)

If α = 0, f (u) =
u2
2 , the model reduces to the fractional Fowler equation [7,8]

ut + uux + Dµ
x u = νuxx. (7)

And if ν = 0, f (u) = 0, µ =
1
2 , the model reduces to the fractional water wave equation [9]

ut + D
1
2
x u = 0. (8)

The above mentioned models are Boussinesq systems with a nonlocal viscous term, they play more and more important
role in investing the effect of viscosity on the gravity wave. In the previous studies, theoretical analysis for the nonlinear
differential equationswith a nonlocal termhas been investigated [10–14]. For thewell-posedness, regularity and asymptotic
behaviors of solutions of the Cauchy problem for (6) with fractional Laplace operator (5), one can see [4,5]. Many different
numerical methods, including some high order and fast algorithms [15–26], have been developed in the literature for the
computation of linear fractional differential equations. In contrast to the linear problem, there are not many works on
numerical methods for the nonlinear partial differential equations involving the fractional derivatives. A brief overview of
the numerical studies for nonlinear fractional differential equations are given below. Biler et al. [27] developed a numerical
method based on the interacting particles approximation for the solution of a large class of evolution problems involving
the fractional Laplacian and a non-local quadratic-type non-linearity. Ervin et al. [28] developed a fully finite element
approximation to a time dependent fractional diffusion equationwhich contains a nonlocal quadratic nonlinearity. Recently,
Droniou [10] constructed a class of finite difference schemeswith one order for the fractal conservation laws. It is proved that
the numerical solutions converge towardAlibaud’s entropy solution. The discontinuousGalerkin approximation of nonlinear
conservation law with fractional Laplace operator has been discussed and a Kuznetsov type of theory has been established
and applied to obtain the error estimates, see [29]. A Runge–Kutta local discontinuous Galerkin method has been proposed
and stability and error estimations were derived for nonlinear conservation law with fractional Laplace operator in [30] by
Xu and Hesthaven. In Chen’s recent work [5], a Fourier spectral approximation was used to capture the time decay behavior
of Eq. (6). Jennings discussed some efficient numerical methods for the fractional water wave equation (8) in unbounded
domains with nonreflecting boundaries [9]. More recently, a semi-implicit spectral defect correction method is constructed
for a nonlocal Kakutani–Matsuuchi model [31].

The main purpose of this work is to develop and investigate some effective difference techniques for fractional water
waves model (1) on a finite domain. With the help of the weighted and shifted Grünwald–Letnikov (WSGL) formula, which
was originally developed in Ref. [18] to approximate the nonlocal fractional operators, we design a series of second order
accurate difference schemes for the model (1) with the linear and nonlinear convection terms. Moreover, we prove the
existence and the uniqueness of the solution for the proposed schemes and study the properties of the numerical solutions.
We show that our schemes are unconditionally convergentwith second-order accuracy in both temporal and space accuracy.
To our best acknowledge, stable and second order accurate difference methods have never been constructed before in the
literature for solving the model equation (1).

The rest of the paper is organized as follows. In Section 2,we introduce some notations and then briefly review the second
difference discretizations of fractional derivatives. In Section 3, we first design numerical scheme for model (1) with linear
convection, i.e., f (u) = u. Later, we discuss the associated stability estimates and convergence analysis of the presented
difference schemes. Then, we discretize the nonlinear equation (1) with nonlinear convection f (u) = u2/2. We discretize
the model (1) in time via a second-order Crank–Nicolson-differentiation formula. The nonlinear term in Eq. (1) is treated
by linearization in our algorithm so that the linear iteration is solved at each time-step. The existence, stability and error
estimates of our presented numerical schemes are established. We demonstrate the desired performance of the proposed
numerical schemes in Section 5 by extensive numerical examples. The numerical results reported in this section are in good
agreement with the theoretical estimates and thus demonstrate the effectiveness of the proposedmethod. Andwe examine
the effect of different parameters appearing inmodel (1). The numerical simulations show that the value ofµ has significant
effect on the profiles of the solutions of the presented models. Finally, we give our conclusion in Section 6.
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