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a b s t r a c t

High-order numerical methods for solving differential equations are, in general, fairly sen-
sitive to perturbations in their data. A previously proposed radial basis function (RBF)
method, namely an integrated multiquadric scheme (IMQ), is applied to two-point bound-
ary value problems whose solutions exhibit thin boundary layers. As frequently observed
among RBF methods, the matrices arising are ill-conditioned, in this paper to the point of
numerical singularity. The sensitivity of themethod to perturbations and round-off error is
investigated, and evidence is provided that perturbations are not nearly as strongly ampli-
fied as suggested by the large condition numbers of the matrices used in the computation.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Many methods exist for solving boundary value problems (BVPs). The efficacy of each method is largely dependent on
the problem itself. Problems more difficult to solve numerically, such as those with interior or boundary layers, will require
a large number of discretization points for good resolution. In situations such as these, higher order methods, which depend
on a problem’s global information to converge to a solution, can be very effective for finding solutions. Amethod introduced
in [1] uses coordinate stretching and the Chebyshev spectral collocationmethod for a good resolution of boundary layers. By
using a transformed boundary value problem, as in [1], more collocation points can be placed in the boundary layer without
causing numerical difficulty.

Kansa [2,3] introduced the method of meshless radial basis functions (RBFs) for the solution of differential equations in
1990. One of the most powerful RBF methods is based on Hardy’s multiquadric basis functions (MQ) [4]. These methods,
however, appear to be notoriously unstable even with a relatively coarse discretization. As suggested in [5], we consider
the MQ Integral Formulation (IMQ) with the transformations used in [1]. The matrices arising from this scheme are so ill-
conditioned [6] that its high accuracy, as shown in Section 5, would seem surprising. We saw similar results for a spectral
collocation method, discussed in [7]. The ill-conditioning of spectral differentiation matrices (and matrices associated with
the RBFmethod) is well known. In general, however, this ill-conditioning does not manifest itself in a loss of accuracy, a fact
that was probably first observed by Berrut [8].

In the context of radial basis functions the phenomenon is also known as Schaback’s ‘‘principle of uncertainty’’ [9].
Essentially this principle asserts that one cannot havewell-conditionedmatrices in RBFmethods and a small approximation
error at the same time. It is alsowell known in theRBF community that, in general, the problems going fromdata to expansion
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Fig. 1. ψ10(x), ψ ′

10(x), ψ
′′

10(x).

coefficients, and from expansion coefficients to solution values are both ill-conditioned, but the mathematical problem
of going directly from data to the solution values is well-conditioned. In this paper, we will consider whether, and how,
perturbations in data are amplified by the IMQ method to the extent suggested by the ill-conditioning of the matrices used
in the computation. Our analysis sheds light on the mechanism by which RBF methods achieve high accuracy despite the
occurrence of highly ill-conditioned matrices, and the interplay between the two main steps of the algorithm. Sections 5–7
expand on the idea of ‘‘effective condition numbers’’ introduced previously in the literature (see, e.g., [10,11]).

Lastly, we are only looking at one-dimensional problems here, as the purpose of the paper is to explain and illustrate
issues of numerical stability. One should expect to observe the same phenomena in higher dimensions, where RBF methods
perform very well.

The paper is organized as follows. In Section 2we describe the IntegratedMultiquadric RBFmethod. Section 3 introduces
the model problems for our computations. Section 4 introduces the domain transformations which allow resolution of very
thin boundary layers. Section 5 contains a discussion on the condition number of a generic matrix and looks at worst and
average case scenarios. Sections 6–7 present our main analysis and results.

2. IMQ scheme for solving BVPs

Consider the singularly perturbed two-point boundary value problem (BVP)

ϵz ′′(x)+ p(x)z ′(x)+ q(x)z(x) = f (x), a < x < b, (1)
z(a) = α, z(b) = β, (2)

where ϵ > 0 denotes a fixed (small) constant. We approximate the unknown function z(x) by a linear combination of basis
functions ψ1, . . . , ψN , 1, . . . , xM−1, i.e.,

z(x) ≈ zc(x) =

N
j=1

λjψj(x)+

M
ℓ=1

λN+ℓxℓ−1. (3)

The basis functions (called integrated multiquadrics) ψj(x) are obtained by twice integrating Hardy’s multiquadrics [4]

χj(x) =


(x − xj)2 + c2j . Hence they have the following form [5] (see Fig. 1):

ψj(x) =
1
6
χj(x)(x − xj)+

c2

2
[ln(χj(x)− (x − xj))− χj(x)]

with derivatives

ψ ′

j (x) =
1
2
χj(x)(x − xj)+

c2

2
ln(χj(x)+ (x − xj)),

ψ ′′

j (x) = χj(x).

M is some positive integer. We must also specify N centres xj and the shape parameter cj; we use equispaced points for
the former.We use the constant shape parameter cj = c = .815×mean(dk) suggested byHardy [4], where dk is the distance
from the kth point to its nearest neighbour, and mean(dk) =

1
N

N
k=1 dk is the average of those distances. This may not be

the optimal choice for the shape parameter (e.g., [12,13]), but we stayed with this choice for consistency with the results
in [5].

Effectively, in the IMQmethod we use the Hardy MQ basis to approximate z ′′(x) instead of z(x), which provides a higher
degree of smoothness.

We determine the coefficients λj via collocation, i.e., we require zc(x) to exactly satisfy Eq. (1) at all N centres xj which
serve as collocation points, as well as the boundary conditions (2). With M = 2 we have enough degrees of freedom in the
numerical approximation zc(x) to enforce all collocation and boundary conditions. Collocating the BVP (1) at all N centres
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