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a b s t r a c t

Based on kernel-based approximation technique, we devise in this paper an efficient and
accurate numerical scheme for solving a backward space–time fractional diffusion problem
(BSTFDP). The kernels used in the approximation are the fundamental solutions of the
space–time fractional diffusion equation expressed in terms of inverse Fourier transform
of Mittag-Leffler functions. The use of Inverse fast Fourier transform (IFFT) technique
enables an accurate and efficient evaluation of the fundamental solutions and gives a
robust numerical algorithm for the solution of the BSTFDP. Since the BSTFDP is intrinsic ill-
posed, we apply the standard Tikhonov regularization technique to obtain a stable solution
to the highly ill-conditioned resultant system of linear equations. For choosing optimal
regularization parameter, we combine the regularization technique with the generalized
cross validation (GCV) method for an optimal placement of the source points in the use
of fundamental solutions. Meanwhile, the proposed algorithm also speeds up the previous
method given in Dou andHon (2014). Several numerical examples are constructed to verify
the accuracy and efficiency of the proposed method.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In the last decade, partial differential equations of fractional orders have become the focus of many research studies
due to its potential applications in modelling real physical phenomena from numerous diverse and widespread fields
in fluid mechanics, visco-elasticity, biology, physics, engineering and finance. Fractional calculus in mathematical point
of view is a natural extension of integer-order calculus. It had successfully modelled some physical processes arisen
from real-life problems, for instance, the modelling on the transport of passive tracers carried by fluid flows in a porous
medium under groundwater hydrology. Studies of the complicated phenomena of the interstitial fluid flows in relation to
fractional orders are still under intensive researches and particularly challenging for quantitative analyses and modelling.
A space–time fractional diffusion equation, ∂β

∂tβ u(x, t) + (−∆)
α
2 u(x, t) = 0, obtained from the standard diffusion equation

∂
∂t u(x, t)−∆u(x, t) = 0 by replacing the second order space-derivative by a fractional Laplacian−(−∆)

α
2 , 1 < α ≤ 2 and

the first order time-derivative by a fractional derivative of order β > 0 (in Caputo or Riemann–Liouville sense), has higher
adaptability in modelling from the view point of physical applications. In general, fractional derivative in time can be used
to describe particle sticking and trapping phenomena whereas fractional space derivative is more appropriate to simulate
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long particle jumps. These complicated physical processes produce a concentration profile with sharper peaks and heavier
tails. In particular when β = 1, the space-fractional diffusion equation (SFDE) models particle motion in a heterogeneous
environment in which the probability of long particle jumps follows a power law [1,2].

Due to the demand on a good estimation of heat temperature and heat flux history from only spatially observed data
during a heat propagation process, the investigation of backward heat conduction problem (BHCP) is also important inmany
branches of engineering sciences. Although heat conduction process is very smooth, the process is irreducible. This means
that the characteristic of the solution (for instance, the shape of the interior heat flow) may not be affected by the observed
data. On the other hand, the heat conduction process has no finite propagation speed and thus an efficient non-destructive
testing technique can be achieved at a comparably much lower cost. For instance, in modelling transient heat conduction
phenomena by the standard parabolic heat conduction equation, a complete recovery of the unknown solution is attainable
from solving a well-posed problem providing the initial temperature distribution and boundary conditions are given. In
real-life application, however, the boundary conditions are usually missing and temperature distribution data can only be
measured with noise in some scattered spatial points at a particular time. This makes the BHCP in nature unstable because
the unknown solution and its derivatives have to be determined from indirect observable data which contain measurement
error. The major difficulty in establishing any numerical algorithm for approximating the solution is due to the severe ill-
posedness of the problem and the ill-conditioning of the resultant discretizedmatrix. The BHCP is a typical ill-posed problem
in the sense that the solution of BHCP does not continuously depend on the final temperature data. Any small change
in the given final temperature data may induce enormous change in the solution. The lack of mathematical analysis and
efficient algorithm hinders the development of developing low cost and efficient non-destructive testing technique in real
applications.

Based on recently developed kernel-based approximationmethod,we aim at developing efficient and accurate numerical
algorithm for solving this typical kind of ill-posed BSTFDP. Numerical methods for solvingwell-posed initial/boundary value
problems of fractional diffusion equation can be found from the recent works of Wen and Hon [3], Brunner et al. [4], Cuesta
and Palencia [5], Li and Xu [6], Liu et al. [7], Meerschaert et al. [8] and Yang et al. [9]. Due to the ill-posedness of the BSTFDP,
some kinds of regularization techniques are essential to obtain a stable reconstruction of the solution. For BHCPs, stable
approximation by using regularization techniques can be found in theworks of Han et al. [10] andMuniz et al. [11]. Recently,
numerical solutions were given respectively by Hon and Li [12], Liu [13], Mera [14] and Wei and Wang [15] by using the
Method of Fundamental Solutions (MFS). It is well known that the accuracy of the MFS depends on a suitable placement of
source points. Mera in [14] placed the source points on a line below the initial time whereas Hon and Li in [12] obtained an
improved solution by placing the source points uniformly over both the temporal and spatial axes. Wei and Wang in [15]
provided a new choice method for the source points by using single layer heat potential.

The backward problem of TFDE was tackled respectively by Liu [16] using quasi-reversibility method and Ren et al. [17]
by spectral truncation method. For inverse problems of space–time fractional diffusion equation in one-dimension, some
numerical solutions have been given by Aldoghaither et al. [18]; Wei et al. [19] and Zheng and Wei [20]. To the knowledge
of the authors, there are still very few numerical algorithms for solving inverse problems or backward problems of SFDE
and STFDE in higher-dimensional domain. Based on our previous work [21] on solving the backward problem of TFDE
for the special case of time fractional derivative β = 2/3 by using the method of fundamental solutions, we establish
the numerical construction of solution for BSTFDP for general cases of order of the temporal fractional derivative by using
inverse Fourier transform of theMittag-Leffler functions. For efficient computation, we apply the IFFT technique to evaluate
the fundamental solutions. Since it is impossible to use IFFT directly to obtain the numerical value of fundamental solution
at each point due to the definition of FFT and CPU time complexity, we devise in this paper a feasible and flexible strategy
to obtain a stable, efficient, and accurate solution to the BSTFDP. To solve the highly ill-conditioned resultant system of
linear equations in our computation, we adapt the use of the standard Tikhonov regularization technique. Motivated by our
recent works in [22,21] expressing the solution in terms of integrals of Green’s function of Cauchy’s problem, we combine
the regularization technique with the Generalized Cross Validation (GCV) method for the placement of the source points
in the use of fundamental solutions as kernels to choose the optimal regularization parameter. Numerical examples are
constructed to verify both the efficiency and accuracy of our proposed method.

This paper is organized as follows. In Section 2we consider the backward problems of STFDEwith the temporal fractional
derivative defined in the sense of Caputo and the spatial derivative defined by fractional Laplacian. The numerical scheme
based on the kernel-based approximation is devised in Section 3. Since the fundamental solutions are given in terms of the
inverse Fourier transform of the Mittag-Leffler function, we use IFFT algorithm in our computation to obtain the numerical
values of the fundamental solutions. Numerical verification on the efficiency and accuracy of the proposed method for
backward problems of TFDE, SFDE and STFDE is presented in Section 4. Conclusion is given in Section 5.

2. Backward space–time fractional diffusion problem

Consider the following space–time fractional diffusion equation:

∂βu(x, t)
∂tβ

+ (−∆)
α
2 u(x, t) = 0, x ∈ Rn, t ∈ (0, T ), (2.1)
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