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a b s t r a c t

We present a novel wavefront method based on Gaussian beams for computing high fre-
quency wave propagation problems. Unlike standard geometrical optics, Gaussian beams
compute the correct solution of the wave field also at caustics. The method tracks a front
of two canonical beams with two particular initial values for width and curvature. In a fast
post-processing step, from the canonical solutions we recreate any other Gaussian beam
with arbitrary initial data on the initial front. This provides a simple mechanism to include
a variety of optimization processes, including error minimization and beam width mini-
mization, for a posteriori selection of optimal beam initial parameters. The performance of
the method is illustrated with two numerical examples.

Published by Elsevier Ltd.

1. Introduction

In direct discretization methods for high frequency wave problems, a large number of grid points is needed to resolve
the wave oscillations, and the computational cost to maintain constant accuracy grows algebraically with the frequency. At
sufficiently high frequencies, direct simulations are not feasible. As an alternative, one can use high frequency asymptotic
methods where the cost is either independent of or grows slowly with the frequency, see [1,2]. The Gaussian beammethod
is one such asymptoticmethod for computing high frequencywave fields in smoothly varying inhomogeneousmedia. It was
proposed by Popov [3], based on earlier work of Babič and Pankratova [4]. The method was first applied by Katchalov and
Popov [5], Červený et al. [6] and Klimeš [7] to describe high-frequency seismic wave fields by the summation of Gaussian
beams. In quantum chemistry, Gaussian beams are higher order versions of classical coherent states, and they are used to
approximate the Schrödinger equation; see e.g. Heller, Herman and Kluk [8,9]. Gaussian beams were later applied to seis-
mic migration by Hill [10,11]. For a rigorous mathematical analysis of Gaussian beams we refer to [12] and the more recent
investigations on accuracy [13–18]. The main advantage of this method is that Gaussian beams provide the correct solution
also at caustics where standard geometrical optics breaks down.

In the Gaussian beam method, the initial/boundary data or the wave sources which generate the high frequency wave
field are decomposed into Gaussian beams. Individual Gaussian beams are computed in a Lagrangian fashion by ray tracing,
where quantities such as the curvature andwidth of beams are calculated from ordinary differential equations (ODEs) along
the central ray of the beams. The initial conditions for the ODEs are obtained from the field decomposition at the boundary or
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the source. The contributions of the beams concentrated close to their central rays are determined by Taylor expansion. The
wave field at a receiver is then obtained as a weighted superposition of the Gaussian beams situated close to the receiver.

The past few years have seen a renewed interest in Gaussian beam based methods and their applications [19–22]. One
new direction is the Eulerian Gaussian beam summation methods [23–26]. In this approach, the problem is formulated
by Liouville-type equations in phase space giving uniformly distributed Eulerian traveltimes and amplitudes for multiple
sources. A recent survey of Gaussian beam methods can be found in [27]. Numerical approaches for treating general high
frequency initial data for superposition over physical space were considered in [28,29] for the wave equation.

In this paper, we revisit the Lagrangian formulation and present a wavefront method for computing Gaussian beams.
Wavefront methods have been very successful for standard geometrical optics as they provide a simple mechanism for con-
trolling the resolution and accuracy of the numerical approximation [30,31]. Using them with Gaussian beams is not as
straightforward since the beam method strongly depends on the distribution and width of the beams at the initial front
and on how they spread during their evolution, see e.g. [17,32,33]. We construct our novel wavefront method based on two
canonical functions. We present an efficient strategy consisting of two parts: (1) We compute the wavefronts together with
a set of canonical solutions with a priori and fixed initial data; and (2) In a post-processing step, from the canonical solutions
we recreate Gaussian beams with a posteriori, optimal selection of initial data and compute the wave field by a weighted
sum of beams. This strategy has a few advantages. First, we can compute beams with any arbitrary initial conditions by a
simple linear combination of the canonical solutions at no extra cost. Second, our wavefront construction provides a sim-
ple mechanism to include a variety of optimization processes, e.g. error minimization, for a posteriori selection of optimal
initial parameters. Finally, since the geometrical optics solution can be recovered by the first set of canonical solutions, it
is possible to design an efficient hybrid method which switches between the geometrical optics (which does not require
the post-processing step) and Gaussian beam solutions smoothly. We present numerical examples to verify the efficiency,
accuracy, and the flexibility of the algorithm.

The first step of our algorithm in part 1, which is the computation of wavefronts, is an adaptation of the front tracking
scheme in [34]. It is to be noted that in order to control the resolution of wavefronts, we can also adapt and include other
front tracking methods, such as the grid-based particle method [35] and the fast interface tracking method [36,37], in the
algorithm. The main contributions of this paper include the second step of the algorithm in part 1, i.e. the construction of
canonical functions, and the fast post-processing technique in part 2 based on an optimal selection of the beams’ initial data.

The rest of the paper is organized as follows. In Section 2we first review theGaussian beammodels for the computation of
time harmonic high frequency waves (Sections 2.1–2.4). We then present and discuss different choices of initial parameters
in the computation of Gaussian beams (Section 2.5). Next, in Section 3 we describe the new wavefront method based on
Gaussian beam summation and canonical functions. Numerical examples are performed in Section 4. Finally, we summarize
our conclusions in Section 5.

2. Gaussian beammodels

Gaussian beams are asymptotic solutions of linear wave equations. They can also be extended to some dispersive wave
equations like the Schrödinger equation. Gaussian beam summation is an approximate model for linear high frequency
wave propagation problems. In this approach, the initial/boundary data are decomposed into individual Gaussian beams,
which are computed by a system of ODEs along their central rays. The contribution of each beam close to its central ray is
approximated by Taylor expansion. The wave field is then obtained by summing over the beams. In this section, we review
the governing equations for computing Gaussian beams and formulate the beam summation model.

2.1. High frequency waves and asymptotic approximations

We start with the scalar wave equation

vtt(t, x)− c(x)21v(t, x) = 0, (t, x) ∈ R+ × R2, (1)

where v = v(t, x) is the wave solution, t and x = (x, y)⊤ are the temporal and spatial variables, respectively, and c(x) is
the local speed of wave propagation in the medium. We complement the wave equation (1) with highly oscillatory initial
data that generate high-frequency solutions. The exact form of the data will not be important here, but a typical example is
v(0, x) = a(x) exp(iω k · x), where ω ≫ 1 is the angular frequency and |k| = 1. We assume that the wavelength, which is
inversely proportional to ω, is much smaller than the typical scale of the medium structure (variations in the wave speed)
and the wave propagation distance (the size of the computational domain). Hence, we encounter a multiscale problemwith
highly oscillatory solutions. Note that with slight modifications, the techniques we describe here will also carry over to
systems of wave equations, such as the Maxwell and elastodynamic equations.

We consider time-harmonic waves of type

v(t, x) = u(x) exp(iω t). (2)
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