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composition and the use of any fast pentadiagonal linear solver, respectively. Some numeri-
cal examples are given in order to demonstrate the performance of the proposed algorithms
and their competitiveness with existing algorithms. All of the experiments are performed
on a computer workstation with the aid of programs written in MATLAB.

© 2015 Elsevier Ltd. All rights reserved.

Keywords:

Periodic pentadiagonal matrices
Matrix decomposition

Doolittle LU decomposition
Pentadiagonal linear solver
Linear systems

1. Introduction and objectives

Consider a general periodic pentadiagonal (PP) linear system of the form

Ax = f, (1.1)
where X = (x1, X2, ..., %) . f = (fi. f2, ..., fo)T are unknown and known vectors of length n, respectively, and the coeffi-
cient matrix A is an n-by-n periodic pentadiagonal matrix takes the following form
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by d a
A=1hs by . . Gy |- (1.2)
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Here, the superscript symbol T corresponds to the transpose operation of vector or matrix. Throughout this paper, we assume
that the coefficient matrix A is nonsingular. This special type of system appears not only in a variety of theoretical areas (in
linear algebra or numerical analysis), but also in different areas of applications. For example, such system frequently arises
in spline approximation, data interpolation, the numerical solution of ordinary and partial differential equations (ODEs and
PDEs), vision, image and signal processing (VISP), fluid mechanics, and parallel computing, etc. [1-11].
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Based on the partition procedure described in [9], system (1.1) can be also written in the following two-by-two block form

() @)= =

whereu = (b1, 0,...,0,8y2, an_1)", V= (an, 0,..., 0,0y, b)", X = (X1, %25 . X0—1)", £ = (f1s for + -+, fu1)T, and P
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is the (n — 1)-th leading principal submatrix of A.

A standard solution of the PP linear system (1.1) can be obtained if we know the inverse matrix of A, which would reduce
the problem of determining the solution for this system to one of matrix multiplication having the explicit form x = A~'b.
However, the inverse of an n-by-n periodic pentadiagonal matrix usually cannot be obtained in O(n) operations, since the
inverse matrix has n? elements and it is not, in general, a periodic pentadiagonal matrix itself [12-15]. Therefore, many
direct numerical methods for solving the PP linear systems have been investigated in recent years. For example, by using
the matrix reformulation and Sherman-Morrison-Woodbury formula, Sogabe gave an efficient computational algorithm for
solving PP linear systems in [16]. In paper [17], Karawia presented a recursive algorithm (KPENTA algorithm) for the same
purpose. The algorithm is based on the LU decomposition that represents the coefficient matrix A as a product of lower
and upper triangular matrices A = LU. Consequently, solving AXx = f can be achieved by solutions of two triangular linear
systems Ly = fand Ux = y. However, Karawia’s algorithm may suffer from breakdown for some cases.

As an important subset of the PP linear systems, a periodic pentadiagonal Toeplitz (PPT) linear system Ax = f can be
obtained by setting

1) a; =a, bi = b, di=d fori=1,2,...,n,
2a=a fori=1,2,...,n—1,
b=b fori=2,3,...,n.
Very recently, in their paper [18], Jia and Jiang have derived a fast numerical algorithm for solving PPT linear systems
based on a structure preserving matrix decomposition and Sherman-Morrison-Woodbury formula. All of the algorithms

mentioned above solve PP (or PPT) linear systems in linear time. The main contributions of this paper are summarized as
follows.

e In order to remove all cases where Karawia’s algorithm fails, we propose a symbolic algorithm (Algorithm 2.1) based
on a special matrix decomposition (LDU decomposition) which is different from the classical LDU decomposition given
in [19]. The computational cost of Algorithm 2.1 is less than those of two existing algorithms in [17,16].

e The combination of the partition procedure described in [9] and generalized Doolittle LU decomposition solver yields
another symbolic algorithm (Algorithm 2.2) whose computational cost is also less than those of the algorithms given
in[17,16].

Moreover, it should be mentioned that the corresponding results in this paper can be directly applied to periodic anti-
pentadiagonal (PAP) linear systems and periodic tridiagonal (PT) linear systems [20].

An outline of this paper is as follows. In the next section, we are going to derive two symbolic computational algorithms
to solve system (1.1) in linear time. The main advantage of these two algorithms is that they take less computational costs
and will never suffer from break down. In addition, the solution of periodic anti-pentadiagonal (PAP) linear systems is
also discussed. In Section 3, several numerical experiments are provided to show the performance and effectiveness of
our algorithms. Finally, we make some concluding remarks in Section 4.

2. Main results

In this section, we will formulate two novel symbolic computational algorithms that will not suffer from breakdown to
solve the PP linear system as in (1.1).

2.1. A symbolic algorithm for solving PP linear systems
Based on a special matrix decomposition, we describe a method to solve the PP linear systems in this subsection. To do

this, we begin by considering the lower triangular matrix L, the upper unitriangular matrix D and the nearly unit matrix U
defined by
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