Contents lists available at SciVerse ScienceDirect

Computers and Mathematics with Applications

journal homepage: www.elsevier.com/locate/camwa

RH-conservative matrix characterization of P-convergence in probability

Richard F. Patterson^{a,*}, Ekrem Savaş^b

^a Department of Mathematics and Statistics, University of North Florida Jacksonville, FL 32224, United States
^b Department of Mathematics, Istanbul Ticaret University, Uskudar-Istanbul, Turkey

ARTICLE INFO

Article history: Received 1 August 2010 Received in revised form 20 October 2011 Accepted 20 October 2011

Keywords: RH-conservative Pringsheim limit point P-convergent Random variables P-convergence in probability

ABSTRACT

The goal of this paper is to characterize P-convergence in probability of four-dimensional weighted means using RH-conservative matrices. We begin with the presentation of the following theorem. Let $(X_{k,l}) = (X_k X_l)$ be a double sequence of non-degenerate independently identically distributed random variables such that $E(X_{k,l}) = \mu$ and $E(X_{k,l}) < \infty$ for each (k, l). Suppose that $A = (a_{m,n,k,l})$ is an RH-conservative matrix; then the necessary and sufficient condition for $Y_{m,n}$ to P-converge to $\mu(a - \sum_{k,l} c_{k,l}) + \sum_{k,l} c_{k,l} X_{k,l}$ in probability is that

P- $\lim_{m,n} \sup_{k,l} |a_{m,n,k,l} - c_{k,l}| = 0.$

Other variations and implications will also be presented.

© 2012 Published by Elsevier Ltd

1. Introduction

In 1986 Das and Mohanty presented the following generalization of Jamison, Orey, and Pruitt's result. Let (X_k) be a sequence of non-degenerate independently identically distributed random variables such that $E(X_k) = \mu$ and $E(X_k) < \infty$ for each k. Suppose that $A = (a_{n,k})$ is a conservative matrix; then the necessary and sufficient condition for Y_m to converge to $\mu(a - \sum_k c_k) + \sum_k c_k X_k$ in probability is that

 $\lim_n \sup_k |a_{n,k}-c_k|=0.$

The main goal of this paper is to present a multidimensional analog of Das and Mohanty's results. We begin with the following theorem. Let $(X_{k,l}) = \{X_k X_l\}$ be a double sequence of non-degenerate independently identically distributed random variables such that $E(X_{k,l}) = \mu$ and $E(X_{k,l}) < \infty$ for each (k, l). Suppose that $A = (a_{m,n,k,l})$ is an RH-conservative matrix; then the necessary and sufficient condition for $Y_{m,n}$ to P-converge to $\mu(a - \sum_{k,l} c_{k,l}) + \sum_{k,l} c_{k,l} X_{k,l}$ in probability is that

$$P-\lim_{m,n}\sup_{k,l}|a_{m,n,k,l}-c_{k,l}|=0.$$

Throughout this paper we use a multidimensional analog of Das and Mohanty's methods to establish the theorem here. We have also presented, in addition to the above theorem, variations and implications of this theorem.

* Corresponding author. Tel.: +1 904 620 3714; fax: +1 904 620 2818.

E-mail addresses: rpatters@unf.edu (R.F. Patterson), ekremsavas@yahoo.com (E. Savaş).

0898-1221/\$ - see front matter 0 2012 Published by Elsevier Ltd doi:10.1016/j.camwa.2011.10.057

2. Definitions, notation and preliminary results

Definition 2.1 ([1]). A double sequence $x = [X_{k,l}]$ has the *Pringsheim limit L* (denoted by $P - \lim x = L$) provided that given $\epsilon > 0$, there exists $N \in \mathbf{N}$ such that $|X_{k,l} - L| < \epsilon$ whenever k, l > N. Such an x is described more briefly as "P-convergent".

Definition 2.2 ([2]). The double sequence y is a *double subsequence* of x provided that there exist increasing index sequences $\{n_j\}$ and $\{k_j\}$ such that if $x_j = x_{n_i,k_j}$, then y is formed by

In [3], Robison presented the following notion of a conservative four-dimensional matrix transformation and a Silverman–Toeplitz type characterization of such a notion.

Definition 2.3. The four-dimensional matrix *A* is said to be *RH-conservative* if it maps every bounded P-convergent sequence into a P-convergent sequence.

Theorem 2.1 ([4,3]). The four-dimensional matrix A is RH-conservative if and only if:

 $\begin{array}{l} RH-C_{1}: P-\lim_{m,n} a_{m,n,k,l} = c_{k,l} \text{ for each } k \text{ and } l; \\ RH-C_{2}: P-\lim_{m,n} \sum_{k,l=1,1}^{\infty,\infty} a_{m,n,k,l} = a; \\ RH-C_{3}: P-\lim_{m,n} \sum_{k=1}^{\infty} |a_{m,n,k,l} - c_{k,l}| = 0 \text{ for each } l; \\ RH-C_{4}: P-\lim_{m,n} \sum_{l=1}^{\infty} |a_{m,n,k,l} - c_{k,l}| = 0 \text{ for each } k; \\ RH-C_{5}: \sum_{k,l=1,1}^{\infty,\infty} |a_{m,n,k,l}| < A \text{ for all } (m, n); \text{ and } \\ RH-C_{6}: \text{ there exist finite positive integers } A \text{ and } B \text{ such that } \\ \sum_{k,l>B} |a_{m,n,k,l}| < A. \end{array}$

When these conditions $RH - C_1 - RH - C_6$ are satisfied, we have

$$\mathsf{P}-\lim_{m,n}Y_{m,n}=\mu\left(a-\sum_{k,l}c_{k,l}\right)+\sum_{k,l}c_{k,l}X_{k,l}$$

where $\mu = P - \lim_{k,l} X_{k,l}$ and the double series $\sum_{k,l=1,1}^{\infty,\infty} c_{k,l}(X_{k,l} - \mu)$ is always P-convergent. Note that if $c_{k,l} = 0$ for all (k, l) and a = 1 then Theorem 2.2 reduces to four-dimensional RH-regular summability methods.

Using the above results, Patterson and Savas [5] presented the following multidimensional version of Pruitt's result [8].

Theorem 2.2. A necessary and sufficient condition for $Y_{m,n} = \bar{Y}_m \bar{\bar{Y}}_n$ to P-converge to μ in probability is that $\max_{k,l} |a_{m,n,k,l}| = \max_{k,l} |a_{m,k}a_{n,l}|$ converges to 0 in the Pringsheim sense.

3. The main results

,

We begin the main section with the following RH-conservative characterization of P-convergence in probability.

Theorem 3.1. Let $(X_{k,l}) = (\bar{X}_k \bar{X}_l)$ be a double sequence of non-degenerate independently identically distributed random variables such that $E(X_{k,l}) = \mu$ and $E(X_{k,l}) < \infty$ for each (k, l). Suppose that $A = (a_{m,n,k,l})$ is an RH-conservative matrix; then the necessary and sufficient condition for $Y_{m,n}$ to P-converge in probability to $\mu(a - \sum_{k,l} c_{k,l}) + \sum_{k,l} c_{k,l}X_{k,l}$ is that

$$P - \lim_{m,n} \sup_{k,l} |a_{m,n,k,l} - c_{k,l}| = 0.$$
(3.1)

Proof. Let *X* be the factorable random variable such that $F = \overline{F}\overline{\overline{F}}$ is the common factorable distribution function of \overline{X} and the \overline{X} 's. Let

$$\|A\| = \sup_{m,n} \sum_{k,l} |a_{m,n,k,l}| < \infty.$$

The RH-C conditions grant us the following:

$$E\left(\sum_{k,l}|a_{m,n,k,l}X_{k,l}|\right)\leq \|A\|E(|X_{k,l}|)<\infty,$$

Download English Version:

https://daneshyari.com/en/article/471569

Download Persian Version:

https://daneshyari.com/article/471569

Daneshyari.com