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a b s t r a c t

Efficient inverse subspace bi-iteration and bi-Newton methods for computing the spectral
projector associated with a group of eigenvalues near a specified shift of a large sparse
matrix is proposed and justified. Numerical experiments with a discrete analogue of a non-
Hermitian elliptic operator are discussed to illustrate the theory.
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1. Introduction

This work is devoted to the computation of the spectral projector onto the invariant subspace associated with a group of
eigenvalues of a large-scale sparse matrix A ∈ Cn×n. It is assumed that the target group is near a given complex value and is
well separated from the rest of the spectrum.We can assumewithout loss of generality that A is nonsingular and the desired
projector corresponds to the p ≪ n eigenvalues of smallest magnitude (taking multiplicities into account), since otherwise
we may replace Awith A − σ I , where σ is some shift and I denotes the identity matrix.

Let X1 and X2 be respectively the right and left invariant subspaces of A associated with the p eigenvalues of smallest
magnitude, and let X1, X2 ∈ Cn×p be matrices whose columns form biorthogonal bases of X1 and X2. That is, Xl = span(Xl)
and

X∗

2X1 = I. (1)

Then

AX1 = X1Λ, A∗X2 = X2Λ
∗,

where Λ = X∗

2AX1 ∈ Cp×p is a matrix whose spectrum consists of the p target eigenvalues, and the corresponding spectral
projector is given by

P = X1X∗

2 . (2)
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Usually the projector is not formed explicitly but computed and used in the low-rank form (2) as two rectangular matrices.
It may be useful, for example, in model order reduction, stability analysis and spectral dichotomy [1–3].

For brevitywewill refer to thematrices X1 and X2, which satisfy (1), as biorthogonal. Biorthogonal bases for the subspaces
X1 andX2 are not unique, but the projector (2) does not dependon the choice of the bases. However, for reasons of numerical
stability it is preferable to choose X1 and X2 so that the condition

X∗

2X2 = X∗

1X1 (3)

is satisfied, together with (1). This guarantees that

∥P∥2 = ∥X1∥
2
2 = ∥X2∥

2
2. (4)

Matrices which satisfy (1) and (3) will be referred to as balanced biorthogonal.
To compute thematrices X1 and X2 we propose to use a combination of an inverse subspace bi-iteration and a bi-Newton

method. The first one is described in Section 2. Starting with biorthogonal matrices X1,0, X2,0 ∈ Cn×p, it constructs two
sequences ofmatrices X1,k and X2,k, k = 1, 2, . . . , by solving inexactly, at each iteration k, systemswithmultiple right-hand
sides of the form AX1,k+1 = X1,k and A∗X2,k+1 = X2,k. These systems are solved by GMRES [4] with a right preconditioner
tuned in a way similar to [5], see also [6,7]. A biorthogonalization of the computed matrices X1,k+1 and X2,k+1 is carried out
afterwards.

After a few iterations of this method, the computed approximate invariant subspaces are used to start a bi-Newton
iteration described in Section 3. This is an extension of the Newton iteration described in [8,9]. Results of numerical
experiments with the proposed algorithms are discussed in Section 4.

Note that the right and left invariant subspaces of thematrix A, which are necessary for computing the spectral projector,
can also be computed by applying to A and A∗ methods such as Arnoldi or Jacobi–Davidson [10,2]. However, a block version
with a deflation procedure is often needed. The proposed bi-Newtonmethod has the advantage of being easy to implement,
requires less storage space, and has an ultimately quadratic rate of convergence.

To describe the proposed algorithms we will use some auxiliary procedures. The first one performs a column
orthonormalization of a full rank matrix W ∈ Cn×r by means of QR-decomposition [11]: W = QR, where Q ∈ Cn×r has
orthonormal columns and R ∈ Cr×r is upper triangular. A result of this procedure will be written as (Q , R) = ort(W ) or
Q = ort(W ) if R is not needed.

The second procedure performs a column biorthogonalization of two full rankmatricesW1,W2 ∈ Cn×r using the singular
value decomposition W ∗

2W1 = UDV ∗ [11], where U and V are unitary and D is positive semidefinite diagonal of order r
whose diagonal entries are ordered in a non-increasing order. From U , V and D, this procedure computes the biorthogonal
matrices

V1 = W1VD−1/2, V2 = W2UD−1/2

if D is nonsingular, and otherwise states that the biorthogonalization is infeasible. A successful result of the procedure will
be written as (V1, V2) = biort (W1,W2).

To obtain balanced biorthogonal matrices fromW1 andW2, it is sufficient to perform the column-orthonormalization of
each matrix before the column biorthogonalization:

(V1, V2) = biort (ort(W1), ort(W2)) .

The matrices V1 and V2 obtained this way satisfy the following properties:

span(Vl) = span(Wl), V ∗

l Vl = D−1, V ∗

2 V1 = I.

In addition to the above two procedures we will use the Schur decomposition B = QTQ ∗ of a given matrix B ∈ Cn×n,
where Q ∈ Cn×n is unitary and T ∈ Cn×n is upper triangular. A result of this procedure will be written as (Q , T ) = schur (B).
The Schur decomposition is usually computed with the QR-algorithm [11]. The diagonal entries of T form the spectrum of
B (accurate within rounding errors) and are arranged in an unpredictable order. To obtain the Schur decomposition with
the diagonal entries of T arranged in a desired order, a reordering procedure is applied to Q and T . The reordering in a
non-decreasing order of magnitude and in a non-increasing order of magnitude will be written respectively as

(Q , T ) = reord (Q , T , ≤) , (Q , T ) = reord (Q , T , ≥) .

Let X1 and X2 be biorthogonal matrices. Then P = X1X∗

2 is a spectral projector, associated with a subset of eigenvalues
of the matrix A, if and only if it commutes with A. This leads us to use the norm of the commutator

E = AP − PA (5)

as a stopping criterion in the proposed algorithms. Another stopping criterion can be based on the residuals

R1 = AX1 − X1Λ, R2 = A∗X2 − X2Λ
∗, (6)

where Λ = X∗

2AX1. The matrices E, R1 and R2 are related as follows:

E = R1X∗

2 − X1R∗

2, R1 = EX1, R2 = −E∗X2. (7)
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