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Rock specimens collected from lower, middle, and upper portions of the exhumed Himalayan mid-crust in the
upper Tama Kosi region of east-central Nepal yield pressure–temperature–time–deformation (P–T–t–D) paths
that demonstrate the presence of a structural, metamorphic, and geochronologic discontinuity. A P–T–t–D
path from below the discontinuity defines a loading path with deformation at staurolite-grade metamorphic
conditions occurring at ~10–8 Ma. P–T–t–D paths from above the discontinuity, in contrast, record an earlier
and protracted metamorphic history that includes decompressional heating. Monazite ages from specimens
collected above the discontinuity constrain prograde garnet growth to be N21 Ma with decompression-related
garnet breakdown initiating at c.19 Ma and likely continuing until c.15 Ma. These contrasting P–T–t–D histories
separated by a tectonometamorphic discontinuity are consistentwith an evolutionarymodel for the Himalaya in
which rocks above the discontinuity were metamorphosed in the deep hinterland of the orogen and deformed
during lateral extrusion from beneath Tibet while rocks below the discontinuity were deformed and metamor-
phosed later within the shallower foreland of the orogen. These results demonstrate the spatial and temporal
relationships and compatibility between lateral midcrustal extrusive flow and wedge taper processes within
an evolving orogen.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Ideas about convergence accommodation processes in orogenic
systems have evolved with prevailing geologic thought. While classical
orogenic models have generally been based on critical-taper wedge
concepts, more recent hypotheses have evoked large-scale lateral
midcrustal flow, commonly referred to as channel flow, as a means for
accommodating significant convergence. Dispute over the viability of
these deformation mechanisms for the mid-crust during a collisional
orogenhas been a focal point ofmuch recent research about theHimalayan
orogenic system (Beaumont et al., 2001; Bird, 1991; Corrie and Kohn,
2011; Corrie et al., 2012; Cottle et al., 2007, 2009; DeCelles et al., 1998,
2001; Grujic et al., 1996; Kellett and Grujic, 2012; Kellett et al., 2010;
Kohn and Corrie, 2011; Larson, 2012; Larson and Godin, 2009; Larson
et al., 2010, 2011; Law et al., 2006; Long et al., 2011; McQuarrie et al.,
2008; Pearson and DeCelles, 2005; Robinson et al., 2001, 2003; Sachan
et al., 2010; Searle and Szulc, 2005; Webb et al., 2007) and other
orogens around the world, e.g. the Canadian Cordillera (Carr and
Simony, 2006; Gervais and Brown, 2011; Glombick et al., 2006; Simony

and Carr, 2011; Williams and Jiang, 2005), the Grenville (Jamieson
et al., 2007; Rivers, 2008), and the Appalachians (Hatcher and
Merschat, 2006). Many of the studies referenced above frame their in-
terpretations against ‘endmembers’ of critical-taper wedge and channel
flow.

In critical-taper models deformational processes are related to the
development of an accretionary wedge, the evolving shape of which
reflects equilibrium between the strength of the material in the wedge
and friction across the basal detachment (e.g. Dahlen, 1990; Platt,
1986). In channel flowmodels, however, deformation occurs as a result
of the flow of a low-viscosity, partially-molten midcrustal layer down
a lateral pressure gradient created by the difference in elevation
(lithostatic pressure) between the orogenic hinterland and foreland,
commonly paired with erosional removal of material along the oro-
graphic front (e.g. Beaumont et al., 2001, 2004; Jamieson et al., 2004).
These ‘endmembers’ (i.e. some type of critical-taper wedge vs. channel
flow) are commonly viewed as mutually exclusive processes. Indeed,
much research has been published in support of each specific ‘end-
member’ model.

However, the mutual exclusivity between channel flow and critical-
taper wedge processes commonly portrayed in the literature is in fact a
false dichotomy (Beaumont and Jamieson, 2010; Larson et al., 2010,
2011). Thermo-mechanical channel flow models predict that the fore-
land in front of a laterally-extruding midcrustal channel will deform as
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Fig. 1.A)Digital elevationmodel of theHimalayan system. The borders of Nepal are drawn inwhite (modified fromSearle et al., 2008). B) Simplified geologicmap of Nepal (modified from
Pearson and DeCelles, 2005). C) Geologic map of the study area along the Tama Kosi river (modified from Larson, 2012). Locations of specimens collected for this study are indicatedwith
stars.
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