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a b s t r a c t

We establish the existence of ground state solutions for a quasilinear Schrödinger equation

−∆u + V (x)u −∆(u2)u =| u |
22∗

−2 u + λ | u |
p−1 u, in RN ,

where N ≥ 3, 2∗
=

2N
N−2 , 1 < p < 22∗

− 1 and λ > 0 is a parameter. We do not need the
subcritical exponent p > 3 which was used by several authors to conclude the existence
of solution for the equation above.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction and main result

This paper is concerned with the existence of ground state solutions for the critical quasilinear Schrödinger equation of
the form

−1u + V (x)u − k∆(u2)u = |u|22
∗
−2u + λ|u|p−1u, in RN , (1.1)

where N ≥ 3, k = 1, 2∗
=

2N
N−2 is the Sobolev critical exponent, 1 < p < 22∗

− 1, and λ > 0 is a parameter.
This equation can be obtained from the Schrödinger equation of the form

iψt + △ψ − W (x)ψ + k△(h(|ψ |
2))h′(|ψ |

2)ψ + f (|ψ |
2)ψ = 0, in [0,∞)× RN , (1.2)

where W (x) is a given potential, k is a real constant and f , h are real functions. Let us consider the case h(s) = s, f (s) =
|s|22∗−2 + λ|s|p−1, κ = 1 andW (x) = V (x)+ β . Putting ψ(t, x) = exp(−iβt)u(x), we are led immediately to Eq. (1.1).
A solution of (1.2) of the formψ(t, x) = exp(−iβt)u(x) is called a standing wave. For the special case we consider, u is a

solution of (1.1) if and only ifψ is a standing wave of (1.2). Hence the present research can be applied to look for a standing
wave of (1.2). The quasilinear Schrödinger equation (1.2) is also derived as other models of several physical phenomena.
For example, it was used for the superfluid film equation in plasma physics by Kurihara [1]. It also appears in the theory of
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Heidelberg ferromagnetism and magnus [2,3], in dissipative quantum mechanics [4] and in condensed matter theory [5].
Additionally, we refer readers to [6–11] and their references for further physical backgrounds of Eq. (1.1).

If k = 0, then (1.1) is a semilinear equation which has been studied extensively by applying directly variational methods
in recent years (see e.g. [7,12,13]). If k ≠ 0, then it is quasilinear. In this case, unlike the semilinear problem, we encounter
serious additional difficulties when we try to find solutions by using the classical critical point theory. From the viewpoint
of Sobolev embedding, q = 22∗

=
4N
N−2 is the limiting Sobolev exponent for the embedding X ↩→ Lq(RN), where X = {u ∈

H1(RN) : u2
∈ H1(RN),

√
|V |u ∈ L2(RN)} is the domain of the functional corresponding to (1.1). To start with, since this

embedding is not locally compact, the verification that theweak limit of a Cerami sequence is non-zero becomesmuchmore
complicated. Moreover, X being not even a vector space means the usual variational techniques cannot be directly applied.

Wemention some recent mathematical studies relating to Eq. (1.1) here. In [9], by applying a change of variables, the ex-
istence of a positive solution is proved under the assumption 3 < p < 22∗

−1. By the same change of variables as in [9], the
critical quasilinear equation with periodic potential is studied in [14]. A general problem of (1.1) is the following quasilinear
equation of the form

−

N
i,j=1

Dj(ai,j(x, u)Diu)+
1
2

N
i,j=1

Dsai,j(x, u)DiuDju + V (x)u = |u|22
∗
−2u + λ|u|p−1u, in RN , (1.3)

where Di =
∂
∂xi
, Dsaij(x, s) =

∂
∂saij(x, s) and V ∈ C(RN ,R). Clearly, Eq. (1.3) is reduced to (1.1) if aij(x, u) = (1+ 2u2)δij. For

λ = 1 and a bounded potential V , two existence results of solutions for (1.3) were established in [15] by the Nehari method.
But again the condition 3 < p < 22∗

− 1 is assumed. However, to the best of our knowledge, there is no result about the
existence of solutions for (1.1) with an unbounded potential. Besides, if p ≤ 3, the existence results for (1.1) in the literature
are rare (see e.g. [9,15,16]).

In this paper, we are going to study the existence of ground solutions for (1.1) with an unbounded potential. Also we are
able to dealwith the casewhen 1 < p ≤ 3. Bymaking a change of variables, the original quasilinear equation (1.1) is reduced
to a semilinear one. Then the existence of ground state solutions is obtained by applying the mountain pass theorem and
the concentration-compactness principle.

In order to reduce the statements of our main result, we need the following assumption on the potential V .

(V) V ∈ C(RN ,R) satisfies inf V (x) = V0 > 0 and for each M > 0, meas{x ∈ RN
: V (x) ≤ M} < +∞, where meas denotes

the Lebesgue measure in RN .

A solution u of (1.1) is called a ground state solution if u ≠ 0 and its energy is minimal among the energy of all nontrivial
solutions.

Our main result is the following theorem.

Theorem 1.1. Assume that condition (V) holds.

(i) If N+6
N−2 < p < 22∗

− 1, then (1.1) has a ground state solution for any λ > 0.
(ii) If 1 < p ≤

N+6
N−2 , then there exists a constant λ∗ > 0 such that, for each λ ∈ (λ∗,∞), (1.1) has a ground state solution.

Remark 1.1. In case (i) of our theorem, we only need N+6
N−2 < p < 22∗

− 1 rather than max{N+6
N−2 , 3} < p < 22∗

− 1 which
was used by several authors to conclude the existence of solutions for (1.1) (for example, see [15]). For case (ii), our result
seems better than that of Theorem 1.3 in [16] for N ≥ 10.

2. Preliminaries and minimax level

Define the Hilbert space

E =


v ∈ H1(RN) :


RN

V (x)v2dx < ∞


with the inner product

⟨v,w⟩ =


RN

[∇v · ∇w + V (x)vw]dx

and the norm ∥v∥ = ⟨v, v⟩1/2. It is well known that the embedding E ↩→ Ls(RN) for 2 ≤ s < 2∗ is compact under the
assumption (V).

Eq. (1.1) is the Euler–Lagrange equation associated to the natural energy functional

I(v) =
1
2


RN
(1 + 2v2)|∇v|2dx +

1
2


RN

V (x)v2dx −
1

22∗


RN

|v|22
∗

dx −
λ

p + 1


RN

|v|p+1dx.
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