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a b s t r a c t

In this paper we focus on the numerical solution of nonlinear Black–Scholes equationmod-
eling illiquid markets. Two monotone unconditionally stable splitting methods, ensuring
positive numerical solution and avoiding unstable oscillations, are applied to solve nonlin-
ear Black–Scholes equationmodeling illiquidmarkets. These numerical methods are based
on the LODmethodswhich allowus to solve the discrete equation explicitly. The properties
of these methods are analyzed. The numerical results for vanilla call option are compared
to the local Crank–Nicolson scheme. The numerical results for European butterfly spread
are also provided.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

One of the modern financial theory’s biggest successes in terms of both approach and applicability has been the
Black–Scholes option pricing model developed by Fisher Black and Myron Scholes in 1973 [1] and previously by Robert
Merton [2]. The celebrated Black–Scholes model is based on several restrictive assumption such as liquid, frictionless
and complete markets. In recent years nonlinear Black–Scholes models have been used to build transaction costs, market
liquidity or volatility uncertainty into the celebrated Black–Scholes concept. Since markets liquidity is an issue of very
high concern in financial risk management, in this paper, we are interested in the option pricing model in illiquid markets
proposed by Frey and Patie [3]
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V (S, T ) = f (S), S ∈ Ω := (0, +∞), (1.2)
where S is the price of the underlying asset, T is the maturity date, σ0 is the asset volatility, ρ is a parameter measuring the
market liquidity, the continuous and positive function λ(S) describes the liquidity profile of the market. The payoff function
f (S) is assumed to be a continuous piece-wise linear function.
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Because of the nonlinear nature of this model numerical methods are mandatory to price derivatives and portfolios. The
strong nonlinearity of problem (1.1)–(1.2) makes it difficult to compute the reliable numerical solutions, so for instance
in [3] perform numerical solutions not of (1.1)–(1.2) but a smoothed version of such a problem. Implicit numerical schemes
have been used for numerically solving nonlinear option pricing PDEs [4], and an iterative approach is required to solve the
nonlinear algebraic equation resulting from the discretization, which results in more computational cost. Consequently,
Company et al. [5,6] construct explicit finite difference schemes for (1.1)–(1.2), and investigate their consistency and
stability. However, these explicit schemes have the disadvantage that strictly restrictive conditions on the discretization
parameters are needed to guarantee stability and positivity. To relax the restrictive conditions, in [7], Ehrhardt and Valkov
propose an unconditionally stable explicit finite difference scheme based on the local Crank–Nicolson method proposed by
Abduwali, Sakakihara and Niki [8] (see, also [9]). However, this method has two unfavorable factors. One is that it needs
to compute the inverse of a tridiagonal matrix in every time step. This will result in low computational efficiency of this
method. The other is that although it is unconditionally stable a strictly restrictive condition on the discretization parameters
is needed to guarantee positivity, which is a very important issue for option pricing problems.

In this paper, we introduce an unconditionally stable splitting scheme which is of order two. This scheme does not need
to compute the inverse of anymatrix, and is completely explicit. For comparison,we also introduce an unconditionally stable
and unconditionally positivity-preserving splitting scheme which has been successfully applied to nonlinear Black–Scholes
Equation with transaction costs in [10]. But it is only of order one. The two schemes are essentially ‘‘limit’’ versions of the
LODmethods (see Chapter IV on splitting methods in [11]) and therefore allows us to solve the discrete equation explicitly.

The manuscript is organized as follows: we begin by transforming the original equations into nonlinear diffusion
equations, and considering the spatial semi-discretization and linearization of semi-discrete system. Two splitting schemes
will be introduced in Section 3. The stability, the monotonicity, and the positivity-preserving property of these schemes are
analyzed in Section 4. To illustrate our method we present some numerical experiments in Section 5. In this section, we
compare our numerical schemes with the local Crank–Nicolson scheme given in [7] for vanilla call option. Finally, we give
a summary.

2. Spatial semi-discretization and linearization

2.1. Spatial semi-discretization

For the convenience in the numerical processing and the study of the numerical analysis, we will transform the problem
into a nonlinear diffusion equation. After considering the change of variable t = T − τ , U(S, t) = V (S, τ ), we transform the
problem (1.1)–(1.2) into the following initial value problem
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U(S, 0) = f (S), S ∈ Ω := (0, +∞). (2.2)
To numerically approximate the solution of (2.1)–(2.2) we should consider a bounded numerical domain (S, t) ∈ [0, b] ×

[0, T ]. According to the rigorous mathematical analysis provided by Kangro and Nicolaides in [12] in which the pointwise
bounds for the error caused by various boundary conditions imposed on the artificial boundary are derived, we consider
problem (2.1)–(2.2) equipped with the Dirichlet boundary conditions

U(0, t) = f (0), U(b, t) = f (b), t ∈ [0, T ]. (2.3)
We introduce the spatial grid Ωh with step h by the nodes Si = ih, i = 0, . . . ,M , so that Mh = b. After performing the
second-order central finite difference approximation of the partial derivative ∂2U

∂S2
(S, t), the so-called Gamma Greek of the

option,
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=
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h2
+ O(h2) = ∆iU(t) + O(h2) (2.4)

we obtained the correspondingM−1 dimensional ODEs system for the semi-discrete solution u(t) = [U1(t), . . . ,UM−1(t)]T

u′(t) = A(u(t))u(t) + g(u(t)), t ∈ [0, T ], (2.5)
with
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where g ∈ RM−1 is a vector, generated by the boundary conditions,

g(u(t)) =
1
h2

[β1f (0), 0, . . . , 0, βM−1f (b)]T . (2.7)
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