

Contents lists available at SciVerse ScienceDirect

Computers and Mathematics with Applications

The state of the s

journal homepage: www.elsevier.com/locate/camwa

Some preserving subordination and superordination of analytic functions involving the Liu-Owa integral operator

M.K. Aouf^a, T.M. Seoudy^{b,*}

ARTICLE INFO

Article history: Received 28 March 2011 Accepted 2 September 2011

Keywords: Analytic function Liu-Owa operator Hadamard product Differential subordination Superordination

ABSTRACT

In this paper, we obtain some subordination and superordination-preserving results of analytic functions involving the Liu–Owa integral operator. Sandwich-type result is also obtained.

Crown Copyright © 2011 Published by Elsevier Ltd. All rights reserved.

1. Introduction

Let H(U) be the class of functions analytic in $U=\{z\in\mathbb{C}:|z|<1\}$ and H[a,n] be the subclass of H(U) consisting of functions of the form $f(z)=a+a_nz^n+a_{n+1}z^{n+1}+\cdots$, with $H_0=H[0,1]$ and H=H[1,1]. Let A(p) denote the class of all analytic functions of the form

$$f(z) = z^p + \sum_{n=1}^{\infty} a_{p+n} z^{p+n} \quad (p \in \mathbb{N} = \{1, 2, 3, \ldots\}; \ z \in U).$$
 (1.1)

Let f and F be members of H(U). The function f(z) is said to be subordinate to F(z), or F(z) is said to be superordinate to f(z), if there exists a function $\omega(z)$ analytic in U with $\omega(0)=0$ and $|\omega(z)|<1$ ($z\in U$), such that $f(z)=F(\omega(z))$. In such a case we write $f(z)\prec F(z)$. If F is univalent, then $f(z)\prec F(z)$ if and only if f(0)=F(0) and $f(U)\subset F(U)$ (see [1,2]).

Let $\phi: \mathbb{C}^2 \times U \to \mathbb{C}$ and h(z) be univalent in U. If p(z) is analytic in U and satisfies the first order differential subordination:

$$\phi\left(p(z), zp'(z); z\right) < h(z),\tag{1.2}$$

then p(z) is a solution of the differential subordination (1.2). The univalent function q(z) is called a dominant of the solutions of the differential subordination (1.2) if $p(z) \prec q(z)$ for all p(z) satisfying (1.2). A univalent dominant \tilde{q} that satisfies $\tilde{q} \prec q$ for all dominants of (1.2) is called the best dominant. If p(z) and $\phi\left(p(z),zp'(z);z\right)$ are univalent in U and if p(z) satisfies first order differential superordination:

$$h(z) \prec \phi\left(p(z), zp'(z); z\right),\tag{1.3}$$

E-mail addresses: mkaouf127@yahoo.com (M.K. Aouf), tmseoudy@gmail.com (T.M. Seoudy).

^a Department of Mathematics, Faculty of Science, Mansoura 35516, Egypt

^b Department of Mathematics, Faculty of Science, Fayoum University, Fayoum 63514, Egypt

^{*} Corresponding author.

then p(z) is a solution of the differential superordination (1.3). An analytic function q(z) is called a subordinant of the solutions of the differential superordination (1.3) if $q(z) \prec p(z)$ for all p(z) satisfying (1.3). A univalent subordinant \tilde{q} that satisfies $q \prec \tilde{q}$ for all subordinants of (1.3) is called the best subordinant (see [1,2]).

Motivated essentially by Jung et al. [3], Liu and Owa [4] introduced the integral operator $Q_{\theta n}^{\alpha}: A(p) \to A(p)$ as follows:

$$Q_{\beta,p}^{\alpha}f(z) = \binom{p+\alpha+\beta-1}{p+\beta-1} \frac{\alpha}{z^{\beta}} \int_{0}^{z} \left(1 - \frac{t}{z}\right)^{\alpha-1} t^{\beta-1} f(t) dt, \quad (\alpha > 0; \beta > -1; \ p \in \mathbb{N}),$$

$$(1.4)$$

and

$$Q_{\beta,n}^0 f(z) = f(z), \quad (\alpha = 0; \ \beta > -1).$$

For $f \in A(p)$ given by (1.1), then from (1.4), we deduce that

$$Q_{\beta,p}^{\alpha}f(z) = z^{p} + \frac{\Gamma(\alpha + \beta + p)}{\Gamma(\beta + p)} \sum_{n=1}^{\infty} \frac{\Gamma(\beta + p + n)}{\Gamma(\alpha + \beta + p + n)} a_{p+n} z^{p+n} \quad (\alpha \ge 0; \ \beta > -1; p \in \mathbb{N}). \tag{1.5}$$

It is easily verified from the definition (1.5) that (see [4])

$$z\left(Q_{\beta,p}^{\alpha}f(z)\right)' = (\alpha + \beta + p - 1)Q_{\beta,p}^{\alpha - 1}f(z) - (\alpha + \beta - 1)Q_{\beta,p}^{\alpha}f(z). \tag{1.6}$$

We note that $Q_{c,p}^1f(z) = J_{c,p}(f)(z) = \frac{c+p}{z^c} \int t^{c-1}f(z)dt$ (c > -p), where the operator $J_{c,p}$ is the generalized Bernardi-Libera-Livingston integral operator (see [5]). Also, we note that the one-parameter family of integral operator $Q_{\beta,1}^{\alpha} = Q_{\beta}^{\alpha}$ was defined by Jung et al. [3] and studied by Aouf [6] and Gao et al. [7].

To prove our results, we need the following definitions and lemmas.

Definition 1 ([1]). Denote by \mathcal{F} the set of all functions q(z) that are analytic and injective on $\bar{U} \setminus E(q)$ where

$$E(q) = \left\{ \zeta \in \partial U : \lim_{z \to \zeta} q(z) = \infty \right\},\,$$

and are such that $q'(\zeta) \neq 0$ for $\zeta \in \partial U \setminus E(q)$. Further let the subclass of \mathcal{F} for which q(0) = a be denoted by $\mathcal{F}(a)$, $\mathcal{F}(0) \equiv \mathcal{F}_0$ and $\mathcal{F}(1) \equiv \mathcal{F}$.

Definition 2 ([2]). A function L(z,t) ($z \in U$, $t \ge 0$) is said to be a subordination chain if L(0,t) is analytic and univalent in U for all $t \ge 0$, L(z,0) is continuously differentiable on [0; 1) for all $z \in U$ and $L(z,t_1) \prec L(z,t_2)$ for all $0 \le t_1 \le t_2$.

Lemma 1 ([8]). The function $L(z, t) : U \times [0; 1) \longrightarrow \mathbb{C}$ of the form

$$L(z,t) = a_1(t)z + a_2(t)z^2 + \cdots \quad (a_1(t) \neq 0; \ t > 0),$$

and $\lim_{t\to\infty} |a_1(t)| = \infty$ is a subordination chain if and only if

$$\operatorname{Re}\left\{\frac{z\partial L\left(z,t\right)/\partial z}{\partial L\left(z,t\right)/\partial t}\right\} > 0 \quad (z \in U, \ t \ge 0).$$

Lemma 2 ([9]). Suppose that the function $H: \mathbb{C}^2 \to \mathbb{C}$ satisfies the condition

Re
$$\{H(is; t)\} < 0$$

for all real s and for all $t \le -n(1+s^2)/2$, $n \in \mathbb{N}$. If the function $p(z) = 1 + p_n z^n + p_{n+1} z^{n+1} + \cdots$ is analytic in U and

Re
$$\{H(p(z); zp'(z))\} > 0 \quad (z \in U)$$
,

then Re $\{p(z)\} > 0$ for $z \in U$.

Lemma 3 ([10]). Let $\kappa, \gamma \in \mathbb{C}$ with $\kappa \neq 0$ and let $h \in H(U)$ with h(0) = c. If $\text{Re}\{\kappa h(z) + \gamma\} > 0$ ($z \in U$), then the solution of the following differential equation:

$$q(z) + \frac{zq'(z)}{\kappa q(z) + \gamma} = h(z) \quad (z \in U; q(0) = c)$$

is analytic in U and satisfies Re $\{\kappa h(z) + \gamma\} > 0$ for $z \in U$.

Download English Version:

https://daneshyari.com/en/article/471691

Download Persian Version:

https://daneshyari.com/article/471691

Daneshyari.com