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a b s t r a c t

It is well known that classic two-phase flow equation systems have complex characteristic
roots and, therefore, constitute an ill-posed initial-value problem. Here we suggest that ill-
posedness is due to working with two different material derivatives for the phases, which
have varying velocities, but employing the same position vector for both operators. There
follows an analysis of the conditions required for a global treatment of both phases, but
using only one material derivative for both phases, now coherent with only one position
vector. Consequently, new globalmass- andmomentum-conservation equations for a two-
phase flow without mass exchange are derived by strictly following the classic Reynolds’
transport theorem. The new global mass-conservation equation proposed would only be
valid if the ‘zero-net-mass-flux’ condition, another independent equation, was fulfilled.We
also found that the new equation system is well-posed, i.e. its two characteristic roots are
real if a new relation between velocities and densities is satisfied. Finally, we have high-
lighted the strong connections of new conservation laws with classic treatments, and also
shown that minormodifications of the current equation systemwould turn it into a hyper-
bolic one, thus easing the computational solution of this complex problem.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Two-phase flow is in the core of a large amount of important engineering processes (power, heat transfer, and chemical
process industries), and physical processes (geo-meteorological and biological flows). The key characteristic of a two-phase
flow is the coexistence of two different phases with different velocity fields in the domain, which highly complicates the so-
lution of the corresponding equation system. The computational fluid dynamics (CFD) simulation of two-phase flowbased on
the Euler–Euler approach, also called the separated two-fluidmodel, hasmuch lower computational demands and is the only
practical method for simulating large-scale systems. This method usually also includes the hypothesis of a continuum [1–3].

The separated two-fluidmodel,whichwas originally proposed byWallis [4], is considered the ‘standard’ two-fluidmodel.
It consists of two sets of conservation equations formass,momentumand energy for the two phases. Although it has demon-
strated some success in simulating two-phase flow in pipelines, the separated flow model suffers from an ill-posedness
problem. When the relative velocity between the phases exceeds a critical value, the governing equations do not possess
real characteristics [3,5,6].

This ill-posedness suggests that the results of the standard two-fluid model do not reflect the real flow physics inside the
pipe for these conditions and are incorrect in some essential physical respects. We could also expect their characteristics to
become real when their deficiencies are corrected [5,6].
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Fig. 1. Different position vectors for phase 1 and phase 2.

The main suggestion of this work is that the ill-posedness of the classic equation system for a two-phase flow would
be due to working simultaneously with the two classic material derivatives, i.e. D1 () /Dt following phase 1 and D2 () /Dt
following phase 2, whereas both derivatives are based on the same position vector x(t). Then using both derivatives simul-
taneously, we would follow different paths of derivation (corresponding to the two different velocities), although through
the same position vector, which is clearly impossible.

To centre the problem,webriefly review the classic individualmass-conservation equations for a two-phase flowwithout
mass exchange between the phases [1–3], namely

D1m1

Dt
= 0 ⇒

∂ρ1α1

∂t
+ ∇ · (ρ1α1v1) = 0, (1)

D2m2

Dt
= 0 ⇒

∂ρ2α2

∂t
+ ∇ · (ρ2α2v2) = 0, (2)

in which v is the velocity vector, ρ is the material density and α is the void fraction, and subscripts 1 and 2 stand for phase 1
and phase 2, respectively. The physical key point of a two-phase flow, i.e. that the phase velocities are different from each
other, is also assumed throughout this work.

Based on the classic material derivative concept, Eq. (1) states that a mass system, composed exclusively of phase 1, will
be conserved while it is moving and deforming through time and space. The same is affirmed for a mass system exclusively
composed of phase 2 in Eq. (2).

Notice that both equations treated individually are essentially correct. Nevertheless, if we merely add Eqs. (1)–(2), the
above-commented discrepancy concerning the impossibility of using the same position vector for both phases arises.

This idea is sketched in Fig. 1, which defines a mass differential system composed of phase 1 and phase 2 at some ‘‘point’’
of the flow field in time t . At time t , the different phase elements do coincide at the same ‘‘point’’ x (t). Thus, their respective
position vectors also exactly agree, i.e. x1 (t) = x2 (t) = x (t). However, after a small time interval δt , m1 will have moved
to a new position defined by the vector x (t) + v1δt whereas m2 will have moved to a completely different location now
defined by a different vector x (t)+ v2δt .

It seems clear that, although the phase position vectors at time t coincide, after a small time interval their respective
position vectors are completely different,

x1 (t + δt) = x (t)+ v1δt ≠ x2 (t + δt) = x (t)+ v2δt. (3)
Therefore, using the two former material derivatives simultaneously is clearly incoherent with working with only one po-
sition vector.

Notice that although standard treatments of two-phase flow definitely accept different material derivatives for the
phases, the position vector used is the same for both phases [1–3].

Finally, this suggested discrepancy is also highlighted on comparing the calculation of the phase velocities by applying
the classic phase material derivative operators [1–3] to the same position vector with the strict definition of the velocity of
a mass element, i.e. the time rate of change of its position vector [7–9],

D1x
Dt

=
∂ x
∂t

+ u1
∂ x
∂x

+ v1
∂ x
∂y

+ w1
∂ x
∂z

= v1 = lim
δ t→0

x (t + ∂t)− x (t)
δ t

, (4)

D2x
Dt

=
∂ x
∂t

+ u2
∂ x
∂x

+ v2
∂ x
∂y

+ w2
∂ x
∂z

= v2 = lim
δ t→0

x (t + ∂t)− x (t)
δt

. (5)
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