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a b s t r a c t

In this paper, a class of new methods based on the positive-definite and skew-Hermitian
splitting scheme, called preconditioned generalized local positive-definite and skew-
Hermitian splitting (PGLPSS) methods, are considered to solve non-Hermitian saddle point
problems. The convergence properties of the proposed methods are analyzed, which
prove that the PGLPSS methods are convergent if the iteration parameters and parameter
matrices satisfy appropriate conditions. Some numerical experiments are provided to
verify the efficiency of the proposed method, showing the competitiveness and efficiency
of this novel method over other testing methods, whether it served as a preconditioned
iteration method or as a preconditioner to the Krylov subspace method.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

We consider the iteration solution of large sparse non-Hermitian saddle point problem of the form

Gx =


G E

−E∗ 0

 
x
y


=


p

−q


≡ b, (1.1)

where G ∈ Cn×n is non-Hermitian matrix and its Hermitian part H =
1
2 (G + G∗) is positive definite matrix, E ∈ Cn×m

is a matrix of full column rank, x, p ∈ Cn and y, q ∈ Cm are given vectors with n ≥ m, and E∗ denotes the conjugate
transpose of thematrix E. It readily demonstrates that the solution of (1.1) exists and is unique under the assumptions above;
see [1–4]. The linear systems (1.1) arise in many scientific computing and engineering applications such as constrained
optimization, computational fluid dynamics, mixed finite element methods for solving elliptic partial differential equations
and Stokes problems, constrained least-squares problems, structure analysis and so on; see [5,6]. For such linear systems, a
large number of popular and effective iteration methods have been studied in the literatures, such as Uzawa-type methods
[7,8], preconditioned Krylov subspace iteration methods [9–14], Hermitian and skew-Hermitian splitting (HSS) iteration
methods [15–19], and restrictively preconditioned conjugate gradient methods [20–22]. For more details one can refer
to [23].

In all the methods stated above, the HSS method has attracted many researchers’ attention due to its promising
performance and elegant mathematical properties. Based on the thought of the HSS iteration, many other effectual iteration
methods are devised for solving non-Hermitian (positive-definite or positive semi-definite) systems of linear equations,
such as normal and skew-Hermitian splitting (NSS) method [24,25], positive-definite and skew-Hermitian splitting (PSS)
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method [26], inexact HSS method [27], relaxed HSS method [28], generalized HSS (GHSS) method [29], modified GHSS
method [30], asymmetric and skew-Hermitian splittingmethod [31], generalized PSSmethod [32], local HSS (LHSS)method
or modified local HSS (MLHSS) method [33], generalized LHSS (GLHSS) and preconditioned GLHSS (PGLHSS) iteration
method [34,35], modified relaxed splitting (MRS) method [36] and so on. These iteration methods can not only be used
as stationary iteration solvers, but they can also serve as preconditioners for Krylov subspace methods [13], leading to a
more efficacious class of solvers.

Notice that the aforementioned iteration methods are all derived or inspired by HSS method. However, it is important to
note that the PSS method possesses its special advantages since some special cases of PSS method such as block triangular
(or triangular) and skew-Hermitian splitting (BTSS or TSS) methods may save considerably computational costs than HSS
(-like) iteration method. Specifically, the BTSS iteration method can solve both Hermitian and strongly non-Hermitian
positive-definite systems of linear equations more effectively than HSS iteration method. Recently, based on the idea of the
relaxed HSS iteration [28] and the PSS iteration method, a relaxed deteriorated PSS iteration method [37] is presented for
solving saddle point problems from the Navier–Stokes equation and an alternating positive semi-definite splitting iteration
method [38] is studied for solving non-Hermitian saddle point problems from time-harmonic eddy current models. Besides,
a class of Uzawa-PSS iteration methods based on the Uzawa iteration scheme and the PSS iteration method are proposed
in [39].

Inspired by this, in this paper, a new class of preconditioned generalized local positive-definite and skew-Hermitian
splitting (PGLPSS) iteration methods are proposed for solving the non-Hermitian saddle point problems. The convergence
analysis of the PGLPSS iteration method is presented and the convergence conditions are derived. To evaluate the
effectiveness and the feasibility of the presentmethod, some numerical comparisons are given and experiment results show
that the new proposedmethod is superior to some of existingmethods, i.e., the PGLHSSmethod, theMLHSSmethod and the
HSS method whether it served as a preconditioned iteration method or as a preconditioner to the Krylov subspace method.

This paper is organized as follows. Section 2 introduces the new proposed method, i.e., preconditioned generalized
local positive-definite and skew-Hermitian splitting (PGLPSS) method. Section 3 substantiates theoretically that the PGLPSS
iteration method in solving the non-Hermitian saddle point problem (1.1) is convergent. Numerical experiments are
performed and the numerical comparisons are given in Section 4,which showed that this novelmethod has great superiority
in somedegree comparedwith some testingmethods for solving the non-Hermitian saddle point problems. Finally, Section 5
concludes this paper with some remarks.

2. The preconditioned generalized local PSS method

The main purpose of this section is to introduce the new preconditioned generalized local positive-definite and skew-
Hermitian splitting method. Before doing this, let us use the following parameterized block-diagonal preconditioner

P =


τ1P1 0
0 τ2P2


(2.1)

to precondition the original system (1.1) from the left, where P1 ∈ Cn×n and P2 ∈ Cm×m are prescribed Hermitian positive
definite matrices with τ1, τ2 being positive numbers. Unless otherwise specified, we always assume that P1G = GP1 holds,
then we can obtain the following equivalently linear system

τ1P1 0
0 τ2P2

 
G E

−E∗ 0

 
x
y


=


τ1P1 0
0 τ2P2

 
p

−q


, (2.2)

namely,
τ1P1G τ1P1E

−τ2P2E∗ 0

 
x
y


=


τ1P1p

−τ2P2q


. (2.3)

We remark that similar preconditioning strategies in (2.2)–(2.3) have been exploited by Bai et al. in [19]. If we denote above
coefficient matrix as below

G =


τ1P1G τ1P1E

−τ2P2E∗ 0


. (2.4)

Analogously to [40,35], we consider the following splitting G = R − S of (2.4),

R =


Q1 + P 0

Q3 − τ2P2E∗ Q2


and S =


Q1 − S −τ1P1E
Q3 Q2


, (2.5)

where P and S in (2.5) are the positive-definite and skew-Hermitian splitting of τ1P1G, i.e., τ1P1G = P + S, respectively;
the matrix Q1 ∈ Cn×n is a Hermitian positive semi-definite matrix, Q2 ∈ Cm×m is a Hermitian positive definite matrix, and
Q3 ∈ Cm×n is an arbitrary matrix.
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