



LITHOS

Lithos 93 (2007) 107-125

www.elsevier.com/locate/lithos

# Relict sapphirine+kyanite and spinel+kyanite associations in pyropic garnet from the eastern Sør Rondane Mountains, East Antarctica

Masao Asami <sup>a,\*</sup>, Edward S. Grew <sup>b</sup>, Hiroshi Makimoto <sup>c</sup>

a Department of Earth Sciences, Faculty of Science, Okayama University, 1-1, Tsushima-naka 3-chome, Okayama 700-8530, Japan
b Department of Earth Sciences, University of Maine, 5790 Edward T. Bryand Global Sciences Center, Orono, Maine 04469-5790, USA
c Geoinformation Center, National Institute of Advanced Industrial Science and Technology, 1-1, Higashi 1-chome, Tsukuba 305-8567, Japan

Received 29 September 2004; accepted 20 June 2006 Available online 22 August 2006

#### Abstract

Sapphirine, spinel, orthoamphibole ± quartz and kyanite are included in porphyroblastic garnet in biotitic gneiss enclosed in a lens of metamorphosed ultramafic rocks in the Cambrian granulite-facies metamorphic complex of the eastern Sør Rondane Mountains, Queen Maud Land, East Antarctica. A bulk analysis of the biotitic gneiss reveals features characteristic both of ultramafic rocks, e.g., high contents of Cr and Ni, and of metasomatism associated with fluids having a crustal source, e.g., relatively elevated contents of Li, Rb, Mo, Cs, Ba, Tl, and Pb. This trace element signature is consistent with the biotitic gneiss being a slice of blackwall skarn that developed between harzburgite and the enclosing biotite-hornblende±garnet±orthopyroxene±clinopyroxene gneiss and was subsequently infolded or inserted by faulting. The matrix assemblage of the biotitic gneiss is garnet+corundum+hercynite+biotite+ plagioclase + allanite + zircon. The included associations (all with biotite and rutile) are (1) sapphirine + kyanite, (2) spinel + kyanite, (3) sapphirine+ spinel, (4) kyanite, and (5) orthoamphibole+plagioclase±quartz. The garnet porphyroblasts are compositionally zoned with broad pyropic cores  $(X_{\text{Mg}}(=\text{Mg}/(\text{total Fe}+\text{Mg}))=0.45-0.55)$  surrounded by Fe-richer rims  $(X_{\text{Mg}}\approx0.3\text{ at the outermost})$ part). The garnet cores preserve compositions homogenized under peak conditions of the granulite-facies metamorphism (760-800 °C and 7-8 kb), whereas the Fe-enriched rims are attributed to an amphibolite-facies overprint at 500-600 °C. Theoretical calculations of garnet+corundum+spinel±sapphirine+kyanite equilibria in the FMAS system constrain possible P-T conditions for a sapphirine+spinel+kyanite+garnet ( $X_{\rm Mg} \approx 0.55$ ) assemblage to form near 450 °C and 4 kb on the prograde path. In contrast, a modified calibration of the Das et al. (Das, K., Fujino, K., Tomioka, N., Miura, H., 2006. Experimental data on Fe and Mg partitioning between coexisting sapphirine and spinel: an empirical geothermometer and its application. Eur. J. Mineral., 18, 49–58). sapphirine spinel thermometer gives 860-895 °C for the included associations; pressures would have to be at least 12 kb to stabilize kyanite at these temperatures. Neither estimate is satisfactory and the stability range of kyanite+spinel-hercynite±sapphirine assemblages remains an unresolved question. The Sør Rondane Mountains constitute the third region for kyanite, sapphirine and spinel-hercynite inclusions in garnet in granulite-facies rocks of the Neoproterozoic-Cambrian orogen extending from the Sør Rondane Mountains to Lützow-Holm Bay and onward to Sri Lanka, southern India and southern Madagascar, and thus determining the stability range of kyanite+spinel-hercynite±sapphirine is critical for deducing the tectonic evolution of this orogen. © 2006 Elsevier B.V. All rights reserved.

Keywords: Sapphirine+kyanite; Spinel+kyanite; P-T path; Sør Rondane Mountains; Antarctica

<sup>\*</sup> Corresponding author. Fax: +81 86 251 7895. E-mail address: asami@cc.okayama-u.ac.jp (M. Asami).

#### 1. Introduction

Sapphirine is found most typically in silica-undersaturated Al- and Mg-rich rocks metamorphosed under granulite-facies conditions (Deer et al., 1978); at the highest temperatures it also appears in silica-saturated rocks (Harley and Hensen, 1990; Harley, 1998). Sillimanite is the most common Al<sub>2</sub>SiO<sub>5</sub> phase associated with sapphirine. Nonetheless, sapphirine is also found with kyanite as inclusions in garnet (Motoyoshi et al., 1989; Ogo et al., 1992; Hiroi et al., 1994), though not

always in equilibrium (Simon and Chopin, 2001). Another sapphirine+kyanite paragenesis involves sapphirine formation as breakdown product of kyanite-bearing assemblages during decompression (e.g., Schreyer and Abraham, 1975; Grew, 1986; Johansson and Möller, 1986; Carswell et al., 1989; Möller, 1999; Baba, 1999; Straume and Austrheim, 1999; Baba, 2003), but these occurrences have a very different origin from the included assemblages of interest here. Spinel-hercynite solid solution is also most commonly found with sillimanite, but occurrences with kyanite±spinel-hercynite

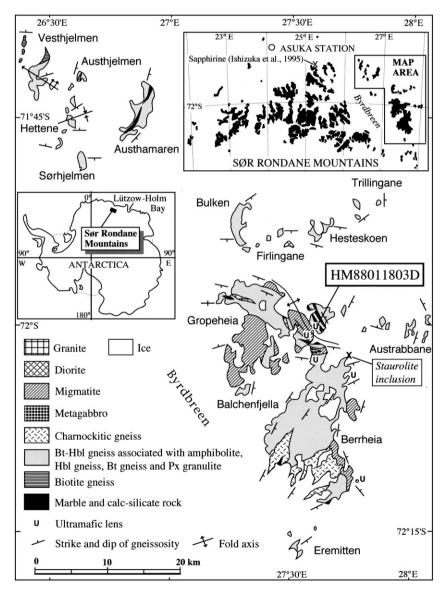



Fig. 1. Geologic map of the eastern Sør Rondane Mountains (modified from Asami et al., 1991, and Ishizuka et al., 1993) showing the localities for the sapphirine-bearing biotitic gneiss (sample HM88011803D, Makimoto et al., 1990; this paper), sapphirine-bearing meta-troctolite from Austkampane west of Byrdbreen (Ishizuka et al., 1995), and for a staurolite-bearing corundum—garnet gneiss (Asami et al., 1990).

### Download English Version:

## https://daneshyari.com/en/article/4717847

Download Persian Version:

https://daneshyari.com/article/4717847

Daneshyari.com