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a b s t r a c t

In this paper, we present methods that directly model the random structure of porous
media using Voronoi tessellations. Three basic structures were generated and they cor-
respond to porous medium geometries with intersecting fractures (granular), intercon-
nected tubes (tubular), and fibers (fibrous). Fluid flow through these models was solved by
amassively parallelized lattice Boltzmann code.We established the porosity–permeability
relations for these basic geometry models. It is found that, for granular and tubular geome-
tries, the specific surface area is a critical structural parameter that can bring their poros-
ity–permeability relations together under a unified Kozeny–Carman equation. A connected
fracture network, superimposed on the basic Voronoi structure, increases the dimension-
less permeability relative to the Kozeny–Carman equation; isolated large pores (vugs), on
the other hand, decreases the dimensionless permeability relative to the Kozeny–Carman
equation. The Kozeny–Carman equation, however, cannot distinguish a heterogeneous
structure with an embedded partially penetrating fracture. The porosity–permeability re-
lation for fibrous geometries in general agrees with those established for simple-cubic,
body-centered cubic, and face-centered cubic models. In the dilute limit, however, the de-
pendence on the solid fraction is weaker in Voronoi geometries, indicating weaker hydro-
dynamic interactions among randomly interconnected fibers than those in the idealized
models.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Aporousmedium is a type of two-phase disorderedmaterial, inwhich onephase is solid and the other phase is pore space,
which must be continuous to allow flow and transport to take place. Artificial porous media include concrete, ceramics,
paper, porous semiconductors and polymer composites; natural porous media include coral, bones, organic tissues, soil and
rocks. Hydrocarbon-bearing rocks, in particular, are important resources, fromwhich crude oil and natural gas are extracted.

In terms of geology, a hydrocarbon bearing rock can be sandstone, carbonate or shale. Sandstone is a clastic sedimentary
rock made up mainly by sand-size (62.5 µm–2 mm) minerals that commonly are quartz and/or feldspar; the sand grains
are cemented by crystallized silicates or calcium carbonates, the pore size is usually greater than 2 µm for conventional
sandstone reservoirs and ranges from 0.03 to 2 µm for tight-gas sandstone reservoirs. Carbonate is formed by many
physicochemical and biochemical processes (e.g. cementation, bioturbation, compaction and pressure solution, mineral
replacement and recrystallization, and dolomitization) that act on terrestrial sediments mixed with organic debris such
as shells or skeletons of mollusks and brachiopods; they may contain vuggy pores that are connected through interparticle
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porosity [1], and the pore size can vary from 10 nm to 10 cm [2]. Shale is a very fine-grained sedimentary rock that is formed
by silt and clay-size (1–62.5 µm) minerals such as quartz and feldspar; it has a high percentage of kerogen if it is organic-
rich and may also contain carbonate and pyrite. There are microfractures, pores in kerogen, and pores in minerals for gas
shales, and the pore size can vary from a few nanometers to several hundred nanometers. These descriptions are brief for
simplicity, and cannot cover all the geometric complexities. Of these rocks, the pore structure of shales and low permeability
sandstones are still under active investigations for better characterization (e.g. [3–8]). The study by Nelson [9] provides a
good summary of pore sizes in sandstones, tight sandstones and shales.

Flow and transport of hydrocarbon in these geological porous media are long-lasting research topics since the modern
petroleum industry emerged in the 19th century. Central to this subject is the law discovered by Darcy [10] that
treats the porous media as a continuum and relates flow velocity to pressure differential by the use of permeability or
hydraulic conductivity. Today we know that the Darcy’s law results from the upscaling of slow viscous laminar flow of an
incompressible Newtonian fluid. The practical importance of Darcy’s law stimulated researchers to derive the permeability
from the knowledge of themicrostructure of porousmedia. Although the simplest way to characterize pore structures is the
void fraction, namely porosity, there have been many other approaches that have gone to greater details. Some are purely
empirical expressions that relate permeability to an effective grain diameter (e.g. [11–13]) or to packing- and sand-shape
factors (e.g. [14]); others are based on more quantitative models of the pore structure that may be further divided into two
classes: the cell model in which the fluid phase is continuous and solid phase is discontinuous ([15,16]), and the bundle or
network of capillary tubes in which the solid phase is continuous with interconnected fluid-filled pores. The well-known
Kozeny–Carman equation [17–19] was developed based on Poiseuille flow through a bundle of capillary tubes, and it yields
permeability as a function of porosity, specific surface area and a coefficient that takes into account the shape and tortuosity
of tubes. The widely used network model treats the porous medium as a network of pore bodies of varying sizes and pore
throats of varying cross sections that connect the pores. The first network model was composed of regular networks of
single-size or varying-size tubes proposed by Fatt [20–22]. In addition to these two approaches, there are also attempts
made to extract statistical information, such as statistical correlation functions, of the pore structure for permeability
estimation [23]. However, it is only possible to derive bounds on the permeability due to the limited information from
this statistical approach. This method, therefore, is known under the name of variational bounds. de Boer et al. [24] provides
a historical review including continuum theory and void fraction theory. The reference by Adler [25] includes more details
and references for these pioneering studies.

Besides the abovementioned intuitive methods, researchers have also applied other theories to study porousmedia. The
first is percolation theory introduced by Broadbent and Hammersley [26], and it deals with completely random materials
without any spatial correlation. The early studies of percolating structures were carried out on random square or cubic
lattice structures (e.g. [27]); later, 3Dmodels were generated using continuum objects placed at random or regular positions
(e.g. [28]). For simulating fluid flow in porous media, networks of tubes [29,30] are mostly used, and usually studied is the
relation between the permeability and the critical percolation threshold (e.g. [31,32]). Golden [33] provides a complete
review of percolation models for porous media, and an in-depth introduction to percolation theory and its applications for
flow in porous media is available in Hunt and Ewing [34]. The second is fractals invented by Mandelbrot [35] for geometries
that can be characterized by statistical self-similarity. Fractal dimension has been used to quantify surface roughness and
its morphology for sandstones (e.g. [36]), carbonates (e.g. [37]) and fractures [38]. Fractal geometries can also be directly
applied to simulate porous media, for example, the Navier–Stokes equation in conduits (pores) with fractal perimeter was
solved for permeability (e.g. [39,40]). The references by Adler [25] and Sahimi and Yortsos [41] have good reviews on the
application of fractals to porous media.

Numerous investigations have also been conducted to reproduce the real microstructure of porous media, and they
are named after reconstruction. Several reconstruction techniques have been developed owning to the advances made in
spatialmicroscopy technology, numerical simulations aided by three-dimensional visualization and applications ofmethods
from disciplines such as statistical physics, spatial analysis and digital image analysis. The first reconstruction technique is
direct measurement of a 3D microstructure via X-ray computed tomography (CT) (e.g. [42,43]), focused ion beam-scanning
electronmicroscope (FIB-SEM)with submicron resolution (e.g. [44,3,6]), or energy-dispersive spectrometry (EDS) that is also
capable of giving mineralogical compositions (e.g. [45,46]). Wildenschild and Sheppard [47] provide a thorough and latest
review of these imaging techniques. The second reconstruction technique is to generate 3D microstructures from spatial
information measured on 2D images (e.g. [48]). This topic has been extensively studied largely due to the convenient and
inexpensive access to high-resolution 2D images such as thin sections from simple optical techniques or cross section images
from other advanced imaging techniques. The process consists of two steps: one step is to measure structural information
on 2D images such as the commonly used porosity and statistical correlation functions; the other step is to numerically
generate 3D images to match those measures using threshold Gaussian random fields (e.g. [49,50]), Boolean or germ-grain
model (e.g. [51]) and simulated annealing (e.g. [52–56]), and recently introduced Markov random field based method [57].
However, these reconstructed models from 2D images are still not the geometrical (pore size and shape) and topological
(pore connectivity) equivalents of the original sample [58,59], although they are equivalent in terms of the applied statistical
measures, they may generate poor connectivity when dealing with low porosity. Along the line of imaging and statistical
measures, recently there is an interestingwork that a 0.4×0.4×17m3 of karst carbonatewas reconstructedwith a resolution
of 5 mm from borehole imagery and caliper data [60]. The third reconstruction technique is to model the geological process
bywhich the porousmediumwasmade [61–63]. By simulating the processes of sedimentation, compaction and cementation
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