FI SEVIER

Contents lists available at ScienceDirect

Computers and Mathematics with Applications

journal homepage: www.elsevier.com/locate/camwa

A 9-bit multiple relaxation Lattice Boltzmann magnetohydrodynamic algorithm for 2D turbulence

Christopher Flint^a, George Vahala^{a,*}, Linda Vahala^b, Min Soe^c

- ^a Department of Physics, William & Mary, Williamsburg, VA 23187, United States
- ^b Department of Electrical & Computer Engineering, Old Dominion University, Norfolk, VA 23529, United States
- ^c Department of Mathematics and Physical Sciences, Rogers State University, Claremore, OK 74017, United States

ARTICLE INFO

Article history:
Available online 9 October 2015

Keywords: Lattice Boltzmann MHD 2D turbulence Single and multiple relaxation

ABSTRACT

While a minimalist representation of 2D Magnetohydrodynamics (MHD) on a square lattice is a 9-bit scalar and 5-bit vector distribution functions, here we examine the effect of using the 9-bit vector distribution function on the effect of a magnetic field on the Kelvin–Helmholtz instability. While there is little difference in the simulation results between the 5-bit and the 9-bit vector distribution models in the vorticity, energy spectra, etc., the 9-bit model permits simulations with mean magnetic field a factor of approximately $\sqrt{2}$ greater than those attainable in the standard 5-bit model. Indeed a 9-bit single-relaxation model can attain such success over a 5-bit multiple-relaxation model at the same computational expense.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Lattice Boltzmann (LB) algorithms [1] are an extremely successful computational technique for solving nonlinear collisional problems because of their simplicity of coding and their ideal parallelization. In principle, one is replacing a computationally difficult problem involving nonlinear convective terms by a linearized kinetic equation with simple advection and local collision operator. Since one is now solving on a lattice in kinetic space, one typically reduces the inherited extra memory/calculations by minimizing the number of kinetic velocities required in LB to recover the fluid equations in the long wavelength limit. In particular, such a minimalist 2D LB MHD model has been introduced by Dellar [2]. It consists of a 9-bit square lattice model for the evolution of the quasi-incompressible fluid velocity **u** and a 5-bit (square lattice) model for the evolution of the magnetic field **B**. This asymmetry is because the fluid velocity **u** arises as the 1st moment but the magnetic field arises from the 0th moment of their corresponding distributions. Here we consider in some detail the effect of utilizing the same 9-bit square lattice for the vector magnetic distribution function as for the particle distribution function on the magnetic stabilization of the Kelvin-Helmholtz instability [3,4]. In considering the stabilization of a velocity jet we extend the collision operator for the evolution of the vector magnetic distribution to a multiple relaxation model (MRT) – a relaxation model introduced in 2002 by d'Humieres et al. [5] for LB for Navier-Stokes flows and which permitted numerically stable LB simulations for considerably higher flow velocities than could be achieved by the single relaxation rate (SRT). Similarly, we [6] have found that an MRT extension to the evolution of the 5-bit vector distribution function permitted considerably greater **B**-fields than under the SRT collision operator. (We note that MRT models for LB MHD have also been considered earlier by Dellar [7,8], but these papers were not concerned with the question we are

http://dx.doi.org/10.1016/j.camwa.2015.09.008 0898-1221/© 2015 Elsevier Ltd. All rights reserved.

^{*} Corresponding author.

E-mail address: gvahala@gmail.com (G. Vahala).

Kinetic Lattice Representation D2q9

Fig. 1. The D2Q9 velocity lattice for our 2D LB-MHD simulations.

investigating.) Here we will find that even a single relaxation rate (SRT) model of the 9-bit collision operator leads to stable simulations with magnetic field magnitudes on the order of 34% greater than those attainable from the 5-bit MRT simulations at fixed Reynolds numbers. Moreover, this can be achieved at the same computational expense (wallclock time). Moving to 9-bit MRT model only gains a further 6% in maximum B-field over the 9-bit SRT, but with a wallclock time increase of over 50%. These results have direct bearing on LB-MHD tokamak simulations with its much larger toroidal to poloidal magnetic fields.

2. Lattice Boltzmann algorithms

For 2D LB MHD [2], the minimalist square lattice is 9 streaming velocities for the evolution of the scalar density distribution function, Fig. 1, but 5 streaming velocities for the vector magnetic distribution [$\{e_i, i = 0 \dots, 4\}$]. However, here we will consider using exactly the same kinetic lattice velocities for both distributions — the D2Q9 model.

The lattice vectors are along the axes and the diagonals of a unit square

$$\mathbf{e}_{i} = (0,0), (\pm 1,0), (0,\pm 1), (\pm 1,\pm 1), i = 0...8.$$
 (1)

The 2-step SRT lattice algorithm (with relaxation rate) for the scalar distribution $f_i(\mathbf{x}, t)$ consists of astream–collide sequence

Stream:
$$f_i'(\mathbf{x}, t + \delta t) = f_i(\mathbf{x} - \mathbf{e}_i \delta t, t)$$

Collide:
$$f_i(\mathbf{x}, t + \delta t) = f_i'(\mathbf{x}, t + \delta t) + \frac{1}{\tau} \left[f_i^{eq}(\rho, \mathbf{u}, \mathbf{B}) - f_j'(\mathbf{x}, t + \delta t) \right]$$
 (2)

where the streaming is a shift of the data from one spatial lattice node to a neighboring node, while where the streaming is a shift of the data from one spatial lattice node to a neighboring node, while the collision step requires only local on-site information. Similarly, for the SRT evolution of the vector magnetic distribution $\mathbf{g}_i(\mathbf{x}, t)$

Stream:
$$\mathbf{g}_{i}'(\mathbf{x}, t + \delta t) = \mathbf{g}_{i}(\mathbf{x} - \mathbf{e}_{i}\delta t, t)$$

Collide:
$$\mathbf{g}_{i}(\mathbf{x}, t + \delta t) = \mathbf{g}'_{i}(\mathbf{x}, t + \delta t) + \frac{1}{\tau_{m}} \left[\mathbf{g}_{i}^{eq}(\rho, \mathbf{u}, \mathbf{B}) - \mathbf{g}'_{i}(\mathbf{x}, t + \delta t) \right], \quad i = 0...8.$$
 (3)

From Chapman–Enskog theory, the kinetic Eqs. (2) and (3) are coupled through the **u**- and **B**-fields in the relaxated distributions, f^{eq} and \mathbf{g}^{eq} [2]

$$f_i^{eq} = w_i \rho \left[1 + 3 \left(\mathbf{e}_i \cdot \mathbf{u} \right) + \frac{9}{2} \left(\mathbf{e}_i \cdot \mathbf{u} \right)^2 - \frac{3}{2} \mathbf{u}^2 \right] + \frac{9}{2} w_i \left[\frac{1}{2} \mathbf{B}^2 \, \mathbf{e}_i^2 - \left(\mathbf{B} \cdot \mathbf{e}_i \right)^2 \right] + O \left(u^4 \right)$$

$$\mathbf{g}_i^{eq} = w_i \left[\mathbf{B} + 3 \left\{ \left(\mathbf{e}_i \cdot \mathbf{u} \right) \, \mathbf{B} - \left(\mathbf{e}_i \cdot \mathbf{B} \right) \, \mathbf{u} \right\} \right] + O \left(u^4 \right)$$

$$(4)$$

with the same weights $w_0 = 4/9$, $w_{1...4} = 1/9$, $w_{5...8} = 1/16$.

Download English Version:

https://daneshyari.com/en/article/471850

Download Persian Version:

https://daneshyari.com/article/471850

<u>Daneshyari.com</u>