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a b s t r a c t

We consider a class of complementarity problems involving functionswhich are nonlinear.
In this paper we reformulate this nonlinear complementarity problem as a system of
absolute value equations (which is nonsmooth). Then we propose a fixed-point method
to solve this nonsmooth system. We prove that the proposed method is globally linearly
convergent under a mild condition. The proposed method is greatly effective not only
for small and medium size problems, but also for large and super-large scale problems.
Especially, our method can efficiently solve super-large scale problems, with a million
variables, in a few tens of minutes on a PC.
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1. Introduction

Let F : ℜ
n

→ ℜ
n be defined by

F(x) = Mx + Ψ (x),

where M = (mij) ∈ ℜ
n×n is an M-matrix, and Ψ : ℜ

n
→ ℜ

n is a monotone diagonal function. Recall that M is called an
M-matrix if it has nonpositive off-diagonals and M−1 exists with M−1

≥ 0; and that a function Ψ is called a monotonic
diagonal function if the ith component of Ψ is a function such that Ψi(x) = ψi(xi)where ψi : ℜ → ℜ, and

(ψi(xi)− ψi(yi))(xi − yi) ≥ 0, i = 1, 2, . . . , n.

In this paper, we consider a class of nonlinear complementarity problems, denoted by NCP(F), which is to find a vector
x ∈ ℜ

n such that

x ≥ 0, F(x) ≥ 0, and xT F(x) = 0, (1.1)

here, the inequalities are meant componentwise.
The NCP(F) (1.1) has many real world applications on some every important problems in physics and finance, such as

the reaction–diffusion problems [1,2], the nonlinear parabolic complementarity problems [3], and European and American
option valuation [4,5]. By using a discretization method such as the center difference, the piecewise linear finite element, or
a finite volume method [3,5], we can reduce these problems into the NCP(F) (1.1) which can be modeled as free boundary
value problems. Then a numerical solution of these problems is obtained by solving the NCP(F) (1.1). However, the resulting
problem (1.1) is usually very large.
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Example ([2,6]). Let D be a bounded open set in ℜ
2 with Lipschitz boundary ∂D . Given two numbers λ > 0 and p > 0,

consider the following free boundary value problem:

−∆u + λup
= 0 in D+,

u = 0 in D0,

u = |∇u| = 0 on Γ ,
u = 1 on ∂D,

where D+ = {z ∈ D : u(z) > 0}, D0 = {z ∈ D : u(z) = 0}, and Γ = ∂D0 = ∂D+ ∩ D are unknown, and ∆u =
∂2u
∂z21

+

∂2u
∂z22

. Using the five-point finite difference approximation, we can get a nonlinear complementarity problem with F(x) =

Mx + Ψ (x), whereM is anM-matrix and Ψ (x) is a monotonically increasing diagonal function.

Over the last decade, a number of methods for solving complementarity problems have been developed. For instance,
smoothing Newton methods [7–9] and semismooth Newton methods ([10,11] and references therein). In addition, the
smoothingNewtonmethodhas been extensively studied in the literature including non-interior point continuationmethods
(refer to [12–21]). For relatedNewtonmethods for solving theNCP(F) (1.1) arising from free boundary value problems, please
refer to [10,22,23]. Other methods about free boundary value problems can also be found in other papers (refer for instance
to [2,6,24]).

Recently, Zhao andWang [22] presented a full-Newton step non-interior point continuous algorithm to solve the NCP(F)
(1.1) with Lipschitz functions. By using a smoothing approximation of plus function, the authors reformulated this comple-
mentarity problem as a system of equations and obtained a full-length Newton direction in each iteration based on some
properties of the M-matrix. Generally, it needs the line search to obtain the iteration step-length for the non-interior point
continuous algorithm. However, the authors used a full-Newton step in each iteration instead of a line search to obtain
that the iteration sequence converges monotonically. Moreover, they showed that the algorithm is globally linearly and
locally superlinearly convergent without any additional assumption, and locally quadratically convergent under suitable
assumptions.

In Ref. [10], the authors proposed a modified semismooth Newton method to solve the NCP(F) (1.1) with Lipschitz func-
tions by using some properties of the M-matrix. They reformulated the NCP(F) (1.1) as a system of nonsmooth equations
and constructed a slant function of this system (for additional details, please refer to [10]) in order to find a Newton direc-
tion in each iteration based on this slant function. The author proved that the method is globally monotonically and locally
superlinearly convergent.

G. Zhou, L. Caccetta and K.K. Teo [23] proposed a smoothing algorithm to solve the NCP(F) (1.1) with non-Lipschitz
functions. They gave some equivalent formulations and reformulated the NCP(F) (1.1) as a nonlinear complementarity
problem involving functions which are Lipschitz continuous by using the techniques in [24]. This is a crucial step in the
development of the Newton-type method for a class of non-Lipschitz complementarity problems. In addition, the authors
showed that the NCP(F) (1.1) has a unique solution under the condition thatM is a P0-matrix. They proved that the method
has global and local quadratic convergence properties.

The algorithms mentioned above have global and local fast convergence properties and are computationally efficient. It
seems to be perfect not only in theoretical analysis, but also in numerical practice about these methods. However, we find
that although these methods can readily handle small and medium size problems, they cannot solve large-scale problems
(such as 300 thousand or 500 thousand dimensions) in short time, to say nothing of super-large scale problems (such as
a million dimensions). In this paper, taking advantage of properties of the M-matrix, we propose a fixed-point algorithm
that can deal with large and super-large scale problems in a short time. We prove that the proposed method is globally
linearly convergent under mild assumptions. Especially, by a number of numerical experiments, we show that our method
has wonderful effects on computational practice. It is good and efficient not only for small and medium size problems but
also for large scale and super-large scale problems. Compared with the methods mentioned above for small and medium
scale problems, our method is superior in solving these problems with high accuracy. It should be particularly pointed out
that, for some discrete cases from free boundary value problems, our method can solve super-large scale NCP(F) (1.1) with
n on the order of a million in a few tens of minutes on a PC.

This paper is organized as follows. In the next section, we reformulate the NCP(F) (1.1) as an absolute value equation,
and a fixed-point algorithm is applied to solve this equation. Then we discuss the convergence properties of the fixed-
point algorithm for Lipschitz and non-Lipschitz complementarity problems in Sections 2.1 and 2.2, respectively. Preliminary
numerical results are reported in Section 3.

In our notation, all vectors are column vectors, the subscript T denotes transpose.ℜn denotes the space of n-dimensional
real column vectors, andℜ

n
+
(respectively,ℜn

++
) denotes the nonnegative (respectively, positive) orthant inℜ

n. The symbol
∥ · ∥2 (for convenience, we denote this symbol by ∥ · ∥) stands for the Euclidean norm in ℜ

n. The matrix I represents the
identitymatrix of appropriate dimension. For any vector x ∈ ℜ

n, we denote by xi the ith component of x and by |x| the vector
with absolute values of each component of x. We denote by diag{x1, . . . , xn} (or diag{xi}) the diagonal matrix inℜ

n×n whose
ith diagonal element is xi.
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