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a b s t r a c t

An active set truncated Newton method for large-scale bound constrained optimization is
proposed. The active sets are guessed by an identification technique. The search direction
consists of two parts: some of the components are simply defined; the other components
are determined by the truncated Newton method. The method based on a nonmonotone
line search technique is shown to be globally convergent. Numerical experiments are
presented using bound constrained problems in the CUTEr test problem library. The
numerical performance reveals that our method is effective and competitive with the
famous algorithm TRON.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Consider the solution of the bound constrained nonlinear programming problem

min f (x), x ∈ Ω := {x ∈ Rn
: l ≤ x ≤ u}, (1.1)

where f is a real-valued, continuously differentiable function in an open set containingΩ . Here l < u and possibly, li = −∞

or ui = ∞.
The optimization problem (1.1) has received much attention in recent decades and a number of different methods for

its solution have been developed [1–11]. Among the methods, active set methods are widely used in solving the bound
constrained optimization problem. Early active set methods [12] are quite efficient for small dimensional problems, but
are unattractive for large-scale problems [1,5]. The main reason is that typically at each step of the algorithm, at most one
constraint can be added to or dropped from the active set. The potential worst-case may appear, where each of the possible
3n active sets is visited before discovering the optimal one [13]. Recently, there has been a growing interest in the design of
active set methods, that are capable of making rapid changes to incorrect predictions [14,6–8,10]. We refer to papers [13,8]
for a review on recent advances in this area.

Recently, based on the identification technique [6], Xiao and Hu [10] proposed an active set subspace Barzilai–Borwein
gradientmethod (SBB). Preliminary numerical results show that the identification techniqueworkswell and the SBBmethod
is competitive with thewell-known SPG2method [2]. Although the SBBmethod has an attractive global convergence theory
and is computationally effective, the convergence rate can be slow in a neighborhood of a local minimizer. To accelerate the
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convergence, we propose an active set truncated Newton method in the paper. Specifically, at each iteration, the active
variables and free variables are defined by the identification technique [6]; we use the method in [6] to update the active
variables and use the truncated Newtonmethod to update the free variables. An advantage of the truncated Newtonmethod
to solve the subproblem is that the method can be used to solve large-scale problems. In addition, the method has the
following advantages: (a) all iterates are feasible and rapid changes in the active set are allowed; (b) themain computational
burden is given by the approximate solution of a square line system whose dimension is equal to the number of free
variables; (c) themethod based on a nonmonotone line search technique is shown to be globally convergent; (d) preliminary
numerical experiments show that the method is effective and competitive with the famous software TRON [9].

The paper is organized as follows. We propose the algorithm in Section 2. In Section 3, we show that the proposed
algorithm is globally convergent. In Section 4, we test the performance of the proposed algorithm and compare it with
the TRON method [9].

Throughout the paper, ∥ · ∥ denotes the Euclidean norm of vectors. Let PΩ(x) denote the projection of x on the set Ω .
If w = (w1, w2, . . . , wn)

T is a n dimension vector and I is an index set such that I ⊂ {1, 2, . . . , n}, we denote by wI the
subvector with components wi, i ∈ I , and denote by wI ≥ 0 the subvector with components wi ≥ 0, i ∈ I .

2. Motivation and properties

In this section, by the use of the identification technique in [6], we propose an active set truncated Newton method for
(1.1). We begin with some notation. Let x̄ be a stationary point of (1.1), and consider the associated active sets

L̄ = {i : x̄i = li}, Ū = {i : x̄i = ui}.

Furthermore, let

F̄ = {1, . . . , n} \ (L̄ ∪ Ū)

be the set of the free variables. By using this notation, a vector x̄ is said to be a stationary point for (1.1) if and only if it
satisfies:i ∈ L̄ ⇒ gi(x̄) ≥ 0

i ∈ F̄ ⇒ gi(x̄) = 0
i ∈ Ū ⇒ gi(x̄) ≤ 0

(2.1)

where gi(x) is the ith component of the gradient vector of f at x. Facchinei, Júdice and Soares [6] gave the following
approximations L(x), F(x) and U(x) to L̄, F̄ , Ū , respectively,

L(x) = {i : xi ≤ li + ai(x)gi(x)},
U(x) = {i : xi ≥ ui + bi(x)gi(x)}, (2.2)
F(x) = {1, . . . , n} \ (L(x) ∪ U(x)),

where ai(x) and bi(x), i = 1, . . . , n are nonnegative, continuous, bounded function defined on Ω , such that if xi = li or
xi = ui then ai(x) > 0 or bi(x) > 0, respectively. The following theorem shows that L(x), F(x) and U(x) are indeed good
estimates of L̄, F̄ and Ū . For the proof, see Theorem 3.1 in [6].

Theorem 2.1. For any x ∈ Ω, L(x) ∩ U(x) = Ø. Furthermore, if x̄ is a stationary point of problem (1.1) at which the strict
complementarity holds, then there exists a neighborhood N(x̄) of x̄ such that

L(x) = L̄, F(x) = F̄ , U(x) = Ū, ∀ x ∈ N(x̄).

Following the idea of [6], we are going to develop an active set truncated Newton method as follows. We firstly
define the search direction. Let xk = (xk1, x

k
2, . . . , x

k
n)

T
∈ Ω be the current point at iteration k. For simplicity, we let

Lk = L(xk),Uk
= U(xk) and F k

= F(xk). Define the direction dk = (dkLk , d
k
Fk , d

k
Uk)

T by

dki = li − xki , i ∈ Lk (2.3)

and

dki = ui − xki , i ∈ Uk. (2.4)

In what follows, we are going to define dkFk . For this, we define the active set indices of f at xk as follows:

A(xk) = {i : xki = li or xki = ui}.

The active set indices are further subdivided into those indices:

A1(xk) = {i : xki = li, gi(xk) ≥ 0}, A2(xk) = {i : xki = li, gi(xk) < 0}

and

A3(xk) = {i : xki = ui, gi(xk) ≤ 0}, A4(xk) = {i : xki = ui, gi(xk) > 0}.
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