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a b s t r a c t

In this paper, nonlinear oscillators under mixed quadratic and cubic nonlinearities with
stochastic inputs are considered. Different methods are used to obtain second order
approximations, namely; the Wiener–Hermite and perturbation (WHEP) technique and
the homotopy perturbation method (HPM). Some statistical moments are computed for
the different methods using mathematica 5. Comparisons are illustrated through figures
for different case-studies.
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1. Introduction

Quadrate and cubic oscillations arise through many applied models in applied sciences and engineering when studying
oscillatory systems [1]. These systems can be exposed to a lot of uncertainties through the external forces, the damping
coefficient, the frequency and/or the initial or boundary conditions. These input uncertainties cause the output solution
process to be also uncertain. Formost of the cases, getting the probability density function (p.d.f.) of the solution processmay
be impossible. So, developing approximate techniques through which approximate statistical moments can be obtained, is
an important and necessary work. There are many techniques which can be used to obtain statistical moments of such
problems. The main goal of this paper is to introduce an approximate solution for the general mixed quadrate and cubic
nonlinearities of an oscillatory problem. Section 2 deals with quadrate oscillations using two techniques, mainly; theWHEP
technique and HPM. The cubic nonlinearity is analyzed in Section 3 using the same previous techniques. The general
problem of mixed nonlinearities is solved approximately using only the homotopy perturbation method in Section 4. Some
illustrations and comparisons are made to testify the method of analysis.

2. Quadrate nonlinearity

In this section, the following quadratic nonlinear oscillatory equation is considered:

ẍ(t;ω)+ 2wζ ẋ+ w2x+ εw2x2 = F(t;ω), t ∈ [0, T ] (1)

under stochastic excitation F(t;ω)with deterministic initial conditions

x(0) = x0, ẋ(0) = ẋ0,

wherew: frequency of oscillation,
ζ : damping coefficient
ε: deterministic nonlinearity scale
ω ∈ (Ω, σ , P): a triple probability spacewithΩ as the sample space, σ is a σ -algebra on event inΩ and P is a probability

measure.
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Lemma 1. The solution of Eq. (1), if exists, is a power series of ε.

Proof. Rewriting Eq. (1), it can take the following form

ẍ(t;ω)+ 2wζ ẋ+ w2x = F(t)− εw2x2.

Following Pickard approximation, the equation can be rewritten as

ẍn+1(t)+ 2wζ ẋn+1 + w2xn+1 = F(t)− εw2x2n, n ≥ 0

where the solution at n = 0, x0, is corresponding for the simple linear case at ε = 0.
At n = 1, the iteration takes the form:

ẍ1(t)+ 2wζ ẋ1 + w2x1 = F(t)− εw2x20,

which has the following general solution

x1(t) = ψ(t)− εw2
∫ t

0
h(t − s)x20(s)ds,

or

x1(t) = x
(0)
1 + εx

(1)
1 .

At n = 2, the iteration takes the form:

ẍ2(t)+ 2wζ ẋ2 + w2x2 = F(t)− εw2x21,

which has the following general solution

x2(t) = x
(0)
2 + εx

(1)
2 + ε

2x(2)2 + ε
3x(3)2 .

Proceeding like this, one can get the following

xn(t) = x(0)n + εx
(1)
n + ε

2x(2)n + ε
3x(3)n + · · · + ε

n+mx(n+m)n .

Assuming the solution exists, it will be

x(t) = lim
n→∞

xn(t) =
∞∑
j=0

εjxj,

which is a power series of ε. �

As a direct result of this lemma, it is expected that the average, the variance as well as the covariance are also power series
of ε.

2.1. Applying WHEP technique

Since Meecham and his co-workers [2] developed a theory of turbulence involving a truncated Wiener–Hermite
expansion (WHE) of the velocity field, many authors studied problems concerning turbulence [3–8]. A lot of general
applications in fluid mechanics was also studied in [9–11]. Scattering problems attracted the WHE applications through
many authors [12–16]. The nonlinear oscillators were considered as an opened area for the applications of WHE as can be
found in [17–23]. There are a lot of applications in boundary value problems [24,25] and generally in different mathematical
studies [26–29].
The application of the WHE aims at finding a truncated series solution to the solution process of differential equations.

The truncated series composes of two major parts; the first is the Gaussian part which consists of the first two terms,
while the rest of the series constitute the non-Gaussian part. In nonlinear cases, always there exist difficulties in solving the
resultant set of deterministic integro-differential equations got from the applications of a set of comprehensive averages on
the stochastic integro-differential equation obtained after the direct application ofWHE. Many authors introduced different
methods to face these obstacles. Among them, theWHEP techniquewas introduced in [22] using the perturbation technique
to solve perturbed nonlinear problems.
The WHE method utilizes the Wiener–Hermite polynomials which are the elements of a complete set of statistically

orthogonal random functions [30]. The Wiener–Hermite polynomial H(i)(t1, t2, . . . , ti) satisfies the following recurrence
relation:

H(i)(t1, t2, . . . ti) = H(i−1)(t1, t2, . . . ti−1) · H(1)(ti)−
i−1∑
m=1

H(i−2)(t1, t2, . . . ti−2) · δ(ti−m − ti), i ≥ 2 (2)
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